beginning section 3

This commit is contained in:
2020-09-10 20:27:43 -05:00
parent 2653493ab9
commit 10c94bcf9f

View File

@@ -77,7 +77,7 @@ This extends the previous models by Mattis and Bardeen~\cite{Mattis} and Abrikos
Here, we look at Nam's expressions in the weak coupling limit, for no magnetic impurities and an isotropic material.
\begin{equation}
\epsilon(q, \omega) = 1 + \frac{3 \pi}{\omega^2} \frac{n e^2}{m} \left[\int_{\Delta - \omega}^{\Delta}\dd{\omega'} \tanh(\frac{\omega + \omega'}{2 T}) I_1 + \int_{\Delta}^{\infty} \dd{\omega'} \left( \tanh(\frac{\omega + \omega'}{2 T}) I_1 - \tanh(\frac{\omega'}{2 T})I_2 \right) \right], \label{eq:eps}
\epsilon_{\mathrm{Nam}}(\vec{q}, \omega) = 1 + \frac{3 \pi}{\omega^2} \frac{n e^2}{m} \left[\int_{\Delta - \omega}^{\Delta}\dd{\omega'} \tanh(\frac{\omega + \omega'}{2 T}) I_1 + \int_{\Delta}^{\infty} \dd{\omega'} \left( \tanh(\frac{\omega + \omega'}{2 T}) I_1 - \tanh(\frac{\omega'}{2 T})I_2 \right) \right], \label{eq:eps}
\end{equation}
with
\begin{align}
@@ -85,7 +85,7 @@ with
&\quad + F(q, \Re[-\sqrt{(\omega + \omega')^2 - \Delta^2} - \sqrt{\omega'^2 - \Delta^2}]) (g - 1) \\
I_2 &= F(q, \Re[\sqrt{(\omega + \omega')^2 - \Delta^2} - \sqrt{\omega'^2 - \Delta^2}]) (g + 1) \nonumber\\
&\quad + F(q, \Re[\sqrt{(\omega + \omega')^2 - \Delta^2} + \sqrt{\omega'^2 - \Delta^2}]) (g - 1) \\
F(q, E) &= \frac{1}{q \vf} \left[2 S(E) + (1 - S(E)^2)\ln(\frac{S(E) + 1}{S(E) - 1})\right] \\
F(q, E) &= \frac{1}{q \vf} \left[2 S(E) + (1 - S(E)^2)\ln(\frac{S(E) + 1}{S(E) - 1})\right] \label{eq:NamF} \\
S(q, E) &= \frac{1}{q \vf} \left( E - i \left(\Im[\sqrt{(\omega + \omega')^2 - \Delta^2} + \sqrt{\omega'^2 - \Delta^2}] + \frac{2}{\tau} \right) \right) \\
g &= \frac{\omega' \left(\omega + \omega'\right) + \Delta^2}{\sqrt{\omega'^2 - \Delta^2}\sqrt{(\omega + \omega')^2 - \Delta^2}}.
\end{align}
@@ -93,21 +93,29 @@ The assumption of isotropy suppresses the $q$ dependence for $\Delta$, which the
\section{Numerical Techniques \label{sec:technical}}
Nam's expressions are no longer valid for $q \geq q_\mathrm{F}$, and as $q \rightarrow \infty$ exhibit an unphysical $\flatfrac{1}{q}$ dependence, a feature shared by similar expressions in \cite{AGD}.
In order to use~\eqref{eq:zp} and~\eqref{eq:zs}, this must be corrected to prevent divergences.
For sufficiently large momenta, the response function should approach the normal state function\todo{add good ref of this}.
Moreover, $\Im \epsilon$ should go to $0$ when $q \gtrapprox 2 k_{\mathrm{F}}$, as otherwise there will be no available states within the Fermi surface for energy transfer (for more on this point, see the discussion in~\cite{FetterWalecka}).
In order to account for the first point, for the normal state we can use the Lindhard dielectric function, which has the correct nonlocal behaviour to describe the low $z$ noise\cite{QubitRelax}.
The noise integral \eqref{eq:chi} can be calculated numerically, with proper care taken to handle the integrand's behaviour across the entire range.
For small momenta, where $\vf q \ll \omega$, both \eqref{eq:lindhardsolyom} and \eqref{eq:eps} can be series expanded to give explicit expressions.
The Lindhard dielectric function, up to $\mathcal{O}(q^2)$, becomes
\begin{gather}
\epsilon_{\mathrm{Lindhard}}(\vec{q}, \omega) = 1 - \frac{\omega_p^2}{\omega^2} \left(\frac{\omega}{(\omega + \frac{i}{\tau})} + (\vf q)^2 \frac{9 \omega + 5 \frac{i}{\tau}}{15 (\omega + \frac{i}{\tau})^3} \right). \label{eq:lindhardsmallkseries}
\end{gather}
As expected for a description of the normal state, for $q \rightarrow 0$ this reduces to the Drude expression.
The effect of the inaccurate large momentum values in $\epsilon$ is an overestimation of the dissipative part $\Im r_p$ of the reflection coefficient.
To correct for this, we can use~\eqref{eq:lindhardsolyom} and~\eqref{eq:eps} to find $r_{p\mathrm{, Lindhard}}$ and $r_{p\mathrm{, Nam}}$, then choose whichever value has a smaller imaginary part.
Effectively, this defines an $r_{p\mathrm{, effective}}$.
For $q$ below some cutoff $q_{uc}$ on the order of $q_{\mathrm{F}}$, this picks the Nam reflection coefficient and reflects the diminished noise in the superconducting state.\todo{Does this need to be justified with a graph of the two functions?}
All of the momentum dependence in the Nam expression is contained within the $F(q, E)$ function in \eqref{eq:NamF}.
Expanding this out to second order in the momentum gives
\begin{align}
F = \frac43 \frac{1}{\eta} + (\vf q)^2\frac{4}{15} \frac{1}{\eta^3},
\end{align}
where
\begin{equation}
\eta = E - i \left(\Im[\sqrt{(\omega + \omega')^2 - \Delta^2} + \sqrt{\omega'^2 - \Delta^2}] + 2 \frac{1}{\tau} \right).
\end{equation}
This, and other limiting forms, were stated by Nam as well~\cite{Nam1967}.
Inserting this in $\eqref{eq:NamF}$ suffices to obtain the small $q$ values in a more numerically stable way.
The integral in~\eqref{eq:chi} picks out values around $u = \frac{c}{\omega} q \sim \frac{1}{z}$.
As long as $\frac{1}{z} \ll \frac{\omega}{c} q_{uc}$, the value for the noise will reflect the effects of the superconducting expressions, without picking up the inaccuracies of the transition region.
This corresponds with physical distances on the order of $\SI{1}{\nm}$ for metals with $\vf \sim \SI{1e6}{\m\per\s}$.
For $z$ smaller than this, more sophisticated dielectric functions would be necessary to take into account inter-atomic spacing.
By comparison to the $q \rightarrow 0$ case, the large momentum dependence requires more careful thought.
For sufficiently large $q$, the logarithm in $\eqref{eq:NamF}$ goes to $i \pi$, and $F \rightarrow \frac{i \pi}{q \vf}$.
This behaviour leads to an unphysical divergence in \eqref{eq:chi}, as
\section{Experiments \label{sec:experiments}}
\begin{itemize}