revamps method section

This commit is contained in:
2020-08-25 13:47:36 -05:00
parent c8990ad629
commit 2653493ab9
2 changed files with 63 additions and 43 deletions

View File

@@ -207,3 +207,15 @@
title = {Quantum Theory of Many-Particle Systems},
year = 1971
}
@article{Lindhard,
title = {ON THE PROPERTIES OF A GAS OF CHARGED PARTICLES},
author = {Lindhard, J},
abstractNote = {},
doi = {},
journal = {Kgl. Danske Videnskab. Selskab Mat.-fys. Medd.},
number = 8,
volume = 28,
year = {1954},
month = {1}
}

View File

@@ -34,49 +34,62 @@
\end{itemize}
\section{Methods \label{sec:methods}}
The electromagnetic field fluctuations that contribute to qubit relaxation haven described in~\cite{QubitRelax} and~\cite{Henkel1999}.
Both use Fermi's golden rule and the fluctuation-dissipation theorem to relate the relaxation rate to the spectral density of the field fluctations:
\begin{equation}
\frac{1}{T_1} = \frac{d_{(E,B)}^2}{\epsilon_0} \frac{\omega^3}{c^3} \chi_{i}^{(E,B)}(r, \omega) \coth\frac{\omega}{2 T}.
\end{equation}
Here, $\vec{d}_{(E,B)}$ is the dipole moment of a point qubit at position $\vec{r}$, with $i$ the direction of the qubit's dipole moment, with $(E,B)$ represents an electric or magnetic qubit (and correspondingly, an electric or magnetic spectral field density).
The frequency $\omega$ corresponds to the separation between energy levels of the qubit, and here and elsewhere we take $\hbar = k_{\mathrm{B}} = 1$.
For a half space, these spectral densities can be written in terms of the surface's reflection coefficients, as derived by\cite{Henkel1999}.
Considering for now a qubit pointing in the direction perpendicular to the half-space, we can write
\begin{align}
\chi_\perp^E(z, \omega) &= \Re \int_0^{+\infty} \dd{u} \frac{u^3}{v} e^{2 i z v} r_p(u), \label{eq:chi}
\end{align}
with $z$ the distance to the qubit from the half-space measured in terms of the vacuum wavelength $\lambda = \flatfrac{c}{\omega}$.
The integration variable $u$ effectively represents a momentum in units of $\flatfrac{1}{\lambda}$, with $v = \sqrt{1 - u^2}$.
If $v \geq 1$, we take the positive square root $v = i \sqrt{u^2 - 1}$.
The magnetic spectral density is the same, except with an additional factor of $\flatfrac{1}{c^2}$ and with $r_s$ instead of $r_p$.
The relaxation rate for an electric qubit with dipole moment $\vec{d}$ a distance $r$ from a half space, described in~\cite{Henkel1999} and~\cite{QubitRelax}, can be written\todo{Add description here of how and why (e.g. Fermi's golden rule + FD theorem)}
\begin{equation}
\frac{1}{T_1} = \frac{d^2}{\hbar \epsilon_0} \frac{\omega^3}{c^3} \chi_{i}^{E}(r, \omega) \coth\frac{\omega}{2 T}.
\end{equation}
For a qubit pointing perpendicular to the surface of the half space,
\begin{align}
\chi_\perp^E(z, \omega) &= \Re \int_0^{+\infty} \dd{u} \frac{u^3}{v} e^{2 i z v} r_p(u). \label{eq:chi}
\end{align}
Here, $z$ is measured in units of the vacuum wavelength $\frac{c}{\omega}$, $v = \sqrt{1 - u^2}$ and we take the root $v = i \sqrt{u^2 - 1}$ for $u \geq 1$.
For the description of the behaviour of~\eqref{eq:chi} to remain accurate for small $z$, we use the reflection coefficients in Ford and Weber~\cite{Ford1984}:
\begin{align}
r_p(u) &= \frac{\pi v - \zeta_p(u)}{\pi v + \zeta_p(u)} \\
r_s(u) &= \frac{\zeta_s(u) - \frac{\pi}{v}}{\zeta_s(u) + \frac{\pi}{v}} \\
\zeta_p(u) &= 2i \int_0^\infty \dd{y} \frac{1}{\kappa^2} \left( \frac{y^2}{\epsilon(\frac{\omega}{c}\kappa, \omega) - \kappa^2} + \frac{u^2}{\epsilon_(\frac{\omega}{c}\kappa, \omega)} \right) \label{eq:zp} \\
\zeta_s(u) &= 2i \int_0^\infty \dd{y} \frac{1}{\epsilon(\frac{\omega}{c}\kappa, \omega) - \kappa^2} \label{eq:zs} \\
\kappa^2 &= u^2 + y^2
\end{align}
The treatment in~\cite{QubitRelax} compares the difference between these expressions and the simpler Fresnel reflection coefficients.
In effect, using the Fresnel reflection coefficients for a metal for some constant conductivity corresponds to a local limit $u \rightarrow 0$.
The reflection coefficients are described by Ford and Weber~\cite{Ford1984}\todo{Add description of conditions and derivation methods, surface impedance are in quasistatic limit}:
\begin{align}
r_p(u) &= \frac{\pi v - \zeta_p(u)}{\pi v + \zeta_p(u)} \\
r_s(u) &= \frac{\zeta_s(u) - \frac{\pi}{v}}{\zeta_s(u) + \frac{\pi}{v}} \\
\zeta_p(u) &= 2i \int_0^\infty \dd{y} \frac{1}{\kappa^2} \left( \frac{y^2}{\epsilon(\frac{\omega}{c}\kappa, \omega) - \kappa^2} + \frac{u^2}{\epsilon_(\frac{\omega}{c}\kappa, \omega)} \right) \label{eq:zp} \\
\zeta_s(u) &= 2i \int_0^\infty \dd{y} \frac{1}{\epsilon(\frac{\omega}{c}\kappa, \omega) - \kappa^2} \label{eq:zs} \\
\kappa^2 &= u^2 + y^2
\end{align}
As noted in~\cite{QubitRelax}, these expressions remain valid even for nonlocal descriptions of the dielectric constant.
The dielectric function $\epsilon(q, \omega)$, then, contains the information needed to describe the electromagnetic properties of the surface near the qubit.
For the normal state, the dielectric function derived by Lindhard~\cite{Lindhard} used in~\cite{QubitRelax} describes the non-local electromagnetic response of a metal.
Using the form described by Solyom\cite{SolyomV3},
\begin{equation}
\epsilon_{\mathrm{Lindhard}}(\vec{q}, \omega) = 1 + \frac{q_{TF}^2}{q^2}\frac{\displaystyle 1 + \frac{\omega + \flatfrac{i}{\tau}}{2 \vf q} \ln(\frac{\omega - \vf q + \flatfrac{i}{\tau}}{\omega + \vf q + \flatfrac{i}{\tau}})}{\displaystyle 1 + \frac{\flatfrac{i}{\tau}}{2 \vf q} \ln(\frac{\omega - \vf q + \flatfrac{i}{\tau}}{\omega + \vf q + \flatfrac{i}{\tau}})}. \label{eq:lindhardsolyom}
\end{equation}
Here, $q_{TF}$ is the Thomas-Fermi wavevector $q_{TF}^2 = 3 \flatfrac{\omega_p^2}{\vf^2}$, $\omega_p$ is the plasma frequency $\sqrt{\flatfrac{4 \pi n e^2}{m}}$, $\tau$ is the collision time and $\vf$ is the Fermi velocity.
This can be shown to reduce to the Drude dielectric function in the $q \rightarrow 0$ limit.
Nam~\cite{Nam1967} describes the electrodynamics for superconductors applicable for clean and dirty materials.\todo{Describe his derivations here, based on Green's function methods \& can generalise to strong-coupling and magnetic impurities}
Assuming no magnetic impurities and weak coupling, his expressions reduce to
\begin{equation}
\epsilon(q, \omega) = 1 + \frac{3 \pi}{\omega^2} \frac{n e^2}{m} \left[\int_{\Delta - \omega}^{\Delta}\dd{\omega'} \tanh(\frac{\omega + \omega'}{2 T}) I_1 + \int_{\Delta}^{\infty} \dd{\omega'} \left( \tanh(\frac{\omega + \omega'}{2 T}) I_1 - \tanh(\frac{\omega'}{2 T})I_2 \right) \right], \label{eq:eps}
\end{equation}
with
\begin{align}
I_1 &= F(q, \Re[\sqrt{(\omega + \omega')^2 - \Delta^2} - \sqrt{\omega'^2 - \Delta^2}]) (g + 1) \nonumber\\
&\quad + F(q, \Re[-\sqrt{(\omega + \omega')^2 - \Delta^2} - \sqrt{\omega'^2 - \Delta^2}]) (g - 1) \\
I_2 &= F(q, \Re[\sqrt{(\omega + \omega')^2 - \Delta^2} - \sqrt{\omega'^2 - \Delta^2}]) (g + 1) \nonumber\\
&\quad + F(q, \Re[\sqrt{(\omega + \omega')^2 - \Delta^2} + \sqrt{\omega'^2 - \Delta^2}]) (g - 1) \\
F(q, E) &= \frac{1}{q \vf} \left[2 S(E) + (1 - S(E)^2)\ln(\frac{S(E) + 1}{S(E) - 1})\right] \\
S(q, E) &= \frac{1}{q \vf} \left( E - i \left(\Im[\sqrt{(\omega + \omega')^2 - \Delta^2} + \sqrt{\omega'^2 - \Delta^2}] + \frac{2}{\tau} \right) \right) \\
g &= \frac{\omega' \left(\omega + \omega'\right) + \Delta^2}{\sqrt{\omega'^2 - \Delta^2}\sqrt{(\omega + \omega')^2 - \Delta^2}}.
\end{align}
We use the expressions from Nam in~\cite{Nam1967} to represent the superconducting response function.
This extends the previous models by Mattis and Bardeen~\cite{Mattis} and Abrikosov, Dzyaloshinskii and Gorkov\cite{AGD} to give expressions that allow for broader ranges of impurity values.\todo{Including the full expressions from Nam here is a bit space-prohibitive, but it may be important to show exactly what our assumptions encode to in his notation? ex: by assuming no magnetic impurities, our renormalisation factor becomes simpler.}
As seen in figure\todo{Insert 3D plot here}, the temperature dependence for the superconducting state is richer than for the normal state described in~\cite{QubitRelax}.
When $\omega$ and $T$ are both much smaller than $T_c$, the figure reveals the expected reduction in noise.
As $T \rightarrow T_c$, a smaller $\omega$ is required to facilitate Johnson noise.
In figure\todo{Insert chi vs T plot, for Lindhard and Nam}, the more sensitive temperature dependence of the superconductor is visible against a normal state calculation done with the Lindhard function, as in~\cite{QubitRelax}.
For $T \rightarrow T_c$, the superconducting state noise approaches that of the normal state, as expected.
Here, we look at Nam's expressions in the weak coupling limit, for no magnetic impurities and an isotropic material.
\begin{equation}
\epsilon(q, \omega) = 1 + \frac{3 \pi}{\omega^2} \frac{n e^2}{m} \left[\int_{\Delta - \omega}^{\Delta}\dd{\omega'} \tanh(\frac{\omega + \omega'}{2 T}) I_1 + \int_{\Delta}^{\infty} \dd{\omega'} \left( \tanh(\frac{\omega + \omega'}{2 T}) I_1 - \tanh(\frac{\omega'}{2 T})I_2 \right) \right], \label{eq:eps}
\end{equation}
with
\begin{align}
I_1 &= F(q, \Re[\sqrt{(\omega + \omega')^2 - \Delta^2} - \sqrt{\omega'^2 - \Delta^2}]) (g + 1) \nonumber\\
&\quad + F(q, \Re[-\sqrt{(\omega + \omega')^2 - \Delta^2} - \sqrt{\omega'^2 - \Delta^2}]) (g - 1) \\
I_2 &= F(q, \Re[\sqrt{(\omega + \omega')^2 - \Delta^2} - \sqrt{\omega'^2 - \Delta^2}]) (g + 1) \nonumber\\
&\quad + F(q, \Re[\sqrt{(\omega + \omega')^2 - \Delta^2} + \sqrt{\omega'^2 - \Delta^2}]) (g - 1) \\
F(q, E) &= \frac{1}{q \vf} \left[2 S(E) + (1 - S(E)^2)\ln(\frac{S(E) + 1}{S(E) - 1})\right] \\
S(q, E) &= \frac{1}{q \vf} \left( E - i \left(\Im[\sqrt{(\omega + \omega')^2 - \Delta^2} + \sqrt{\omega'^2 - \Delta^2}] + \frac{2}{\tau} \right) \right) \\
g &= \frac{\omega' \left(\omega + \omega'\right) + \Delta^2}{\sqrt{\omega'^2 - \Delta^2}\sqrt{(\omega + \omega')^2 - \Delta^2}}.
\end{align}
The assumption of isotropy suppresses the $q$ dependence for $\Delta$, which then is just a function of temperature, and can be described using the well-known BCS expression $\Delta \approx 3.06 \sqrt{T_c(T_c - T)}$ (see for example \cite{Tinkham}).
\section{Numerical Techniques \label{sec:technical}}
@@ -84,12 +97,7 @@
In order to use~\eqref{eq:zp} and~\eqref{eq:zs}, this must be corrected to prevent divergences.
For sufficiently large momenta, the response function should approach the normal state function\todo{add good ref of this}.
Moreover, $\Im \epsilon$ should go to $0$ when $q \gtrapprox 2 k_{\mathrm{F}}$, as otherwise there will be no available states within the Fermi surface for energy transfer (for more on this point, see the discussion in~\cite{FetterWalecka}).
In order to account for the first point, for the normal state we can use the Lindhard dielectric function, which has the correct nonlocal behaviour to describe the low $z$ noise\cite{QubitRelax}.
As described from~\cite{SolyomV3}, this is
\begin{equation}
\epsilon_{\mathrm{Lindhard}}(\vec{q}, \omega) = 1 + \frac{q_{TF}^2}{q^2}\frac{\displaystyle 1 + \frac{\omega + \flatfrac{i}{\tau}}{2 \vf q} \ln(\frac{\omega - \vf q + \flatfrac{i}{\tau}}{\omega + \vf q + \flatfrac{i}{\tau}})}{\displaystyle 1 + \frac{\flatfrac{i}{\tau}}{2 \vf q} \ln(\frac{\omega - \vf q + \flatfrac{i}{\tau}}{\omega + \vf q + \flatfrac{i}{\tau}})}. \label{eq:lindhardsolyom}
\end{equation}
The effect of the inaccurate large momentum values in $\epsilon$ is an overestimation of the dissipative part $\Im r_p$ of the reflection coefficient.
To correct for this, we can use~\eqref{eq:lindhardsolyom} and~\eqref{eq:eps} to find $r_{p\mathrm{, Lindhard}}$ and $r_{p\mathrm{, Nam}}$, then choose whichever value has a smaller imaginary part.