diff --git a/paper.tex b/paper.tex index fbe1dc2..2ab0233 100644 --- a/paper.tex +++ b/paper.tex @@ -13,6 +13,8 @@ \usepackage{todonotes} \usepackage{siunitx} +\usepackage{cleveref} + \title{EWJN from a BCS Superconductor} \addbibresource{./bibliography.bib} @@ -20,6 +22,7 @@ \graphicspath{{./figures/}} \newcommand{\vf}{v_{\mathrm{F}}} +\newcommand{\qf}{q_{\mathrm{F}}} \begin{document} @@ -133,6 +136,23 @@ with \end{align} The assumption of isotropy suppresses the $q$ dependence for $\Delta$, which then is just a function of temperature, and can be described using the well-known BCS expression $\Delta \approx 3.06 \sqrt{T_c(T_c - T)}$ (see for example \cite{Tinkham}). +\begin{figure}[htp] + \centering + \includegraphics[width=12cm]{Cond1Re} + \caption{$\Re[\epsilon(q)]$ for $\omega = 1$, $\tau = 0.5$, $\omega_p = 10$, $\vf = 1$, $T = .9999 T_c$, $T_c = 3$} \label{fig:cond1Re} +\end{figure} + +\begin{figure}[htp] + \centering + \includegraphics[width=12cm]{Cond1Im} + \caption{$\Im[\epsilon(q)]$ for $\omega = 1$, $\tau = 0.5$, $\omega_p = 10$, $\vf = 1$, $T = .9999 T_c$, $T_c = 3$} \label{fig:cond1Im} +\end{figure} + +The Lindhard and Nam dielectric constants are compared in \cref{fig:cond1Re} and \cref{fig:cond1Im}, plotting the real and imaginary part for small representative values. +In this regime, $\omega_p > T_c > \omega$, as is typical for the frequency regime of interest, while $\tau$ is chosen to be smaller than $\omega$. +For a typical metal in this description, the Fermi wavevector $\qf$ is around the same order as $\sqrt{3}\frac{\omega_p}{\vf}$ (see discussion on this point in Solyom\cite{SolyomV3}). +We can see in \cref{fig:cond1Im} that the Lindhard dielectric function goes to zero for $q < \qf \approx 10 \sqrt{3}$. + \section{Numerical Techniques \label{sec:technical}} The noise integral \eqref{eq:chi} can be calculated numerically, with proper care taken to handle the integrand's behaviour across the entire range.