38 lines
1.1 KiB
TeX
38 lines
1.1 KiB
TeX
\documentclass{article}
|
|
|
|
%other packages
|
|
\usepackage{amsmath}
|
|
\usepackage{amssymb}
|
|
\usepackage{physics}
|
|
|
|
\usepackage[
|
|
style=phys, articletitle=false, biblabel=brackets, chaptertitle=false, pageranges=false, url=true
|
|
]{biblatex}
|
|
|
|
\usepackage{graphicx}
|
|
\usepackage{todonotes}
|
|
\usepackage{siunitx}
|
|
|
|
\usepackage{cleveref}
|
|
|
|
\title{Notes on coverging noise for low temp for all mean free paths}
|
|
|
|
\addbibresource{./bibliography.bib}
|
|
|
|
\graphicspath{{./figures/}}
|
|
|
|
\newcommand{\vf}{v_{\mathrm{F}}}
|
|
\newcommand{\qf}{q_{\mathrm{F}}}
|
|
|
|
\begin{document}
|
|
|
|
\maketitle
|
|
|
|
Mattis-Bardeen\cite{Mattis} use a canonical field theory approach to find a limit for the response function for the dirty case (because of their average over scattering centers) and in the low momentum limit.
|
|
Abrikosov, Gorkov and Dzyaloshinskii\cite{AGD} do essentially the opposite limit, for clean SCs, as well as a brief extension of both the clean and dirty case to a wider momentum range.
|
|
In Nam\cite{Nam1967} we have the extension which elaborates on the Eliashberg\cite{Eliashberg} and Nambu\cite{Nambu1960}.
|
|
|
|
\printbibliography
|
|
|
|
\end{document}
|