feat: Adds end threshold for early abort
This commit is contained in:
parent
63cecba824
commit
3d3b1a83f6
@ -41,7 +41,7 @@ class BayesRun():
|
|||||||
run_count: int
|
run_count: int
|
||||||
The number of runs to do.
|
The number of runs to do.
|
||||||
'''
|
'''
|
||||||
def __init__(self, dot_inputs: Sequence[DotInput], discretisations_with_names: Sequence[Tuple[str, pdme.model.Discretisation]], actual_model: pdme.model.Model, filename_slug: str, run_count: int, max_frequency: float = None) -> None:
|
def __init__(self, dot_inputs: Sequence[DotInput], discretisations_with_names: Sequence[Tuple[str, pdme.model.Discretisation]], actual_model: pdme.model.Model, filename_slug: str, run_count: int, max_frequency: float = None, end_threshold: float = None) -> None:
|
||||||
self.dot_inputs = dot_inputs
|
self.dot_inputs = dot_inputs
|
||||||
self.discretisations = [disc for (_, disc) in discretisations_with_names]
|
self.discretisations = [disc for (_, disc) in discretisations_with_names]
|
||||||
self.model_names = [name for (name, _) in discretisations_with_names]
|
self.model_names = [name for (name, _) in discretisations_with_names]
|
||||||
@ -50,7 +50,6 @@ class BayesRun():
|
|||||||
self.run_count = run_count
|
self.run_count = run_count
|
||||||
self.csv_fields = ["dipole_moment", "dipole_location", "dipole_frequency"]
|
self.csv_fields = ["dipole_moment", "dipole_location", "dipole_frequency"]
|
||||||
self.compensate_zeros = True
|
self.compensate_zeros = True
|
||||||
|
|
||||||
for name in self.model_names:
|
for name in self.model_names:
|
||||||
self.csv_fields.extend([f"{name}_success", f"{name}_count", f"{name}_prob"])
|
self.csv_fields.extend([f"{name}_success", f"{name}_count", f"{name}_prob"])
|
||||||
|
|
||||||
@ -60,6 +59,13 @@ class BayesRun():
|
|||||||
self.filename = f"{timestamp}-{filename_slug}.csv"
|
self.filename = f"{timestamp}-{filename_slug}.csv"
|
||||||
self.max_frequency = max_frequency
|
self.max_frequency = max_frequency
|
||||||
|
|
||||||
|
if end_threshold is not None:
|
||||||
|
if 0 < self.end_threshold < 1:
|
||||||
|
self.end_threshold: float = end_threshold
|
||||||
|
self.use_end_threshold = True
|
||||||
|
else:
|
||||||
|
raise ValueError(f"{end_threshold} should be between 0 and 1")
|
||||||
|
|
||||||
def go(self) -> None:
|
def go(self) -> None:
|
||||||
with open(self.filename, "a", newline="") as outfile:
|
with open(self.filename, "a", newline="") as outfile:
|
||||||
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
|
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
|
||||||
@ -111,3 +117,9 @@ class BayesRun():
|
|||||||
with open(self.filename, "a", newline="") as outfile:
|
with open(self.filename, "a", newline="") as outfile:
|
||||||
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
|
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
|
||||||
writer.writerow(row)
|
writer.writerow(row)
|
||||||
|
|
||||||
|
if self.use_end_threshold:
|
||||||
|
max_prob = max(self.probabilities)
|
||||||
|
if max_prob > self.end_threshold:
|
||||||
|
_logger.info(f"Aborting early, because {max_prob} is greater than {self.end_threshold}")
|
||||||
|
break
|
||||||
|
Loading…
x
Reference in New Issue
Block a user