feat: adds cli probs
This commit is contained in:
0
deepdog/cli/__init__.py
Normal file
0
deepdog/cli/__init__.py
Normal file
5
deepdog/cli/probs/__init__.py
Normal file
5
deepdog/cli/probs/__init__.py
Normal file
@@ -0,0 +1,5 @@
|
|||||||
|
from deepdog.cli.probs.main import main
|
||||||
|
|
||||||
|
__all__ = [
|
||||||
|
"main",
|
||||||
|
]
|
63
deepdog/cli/probs/args.py
Normal file
63
deepdog/cli/probs/args.py
Normal file
@@ -0,0 +1,63 @@
|
|||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
|
||||||
|
|
||||||
|
def parse_args() -> argparse.Namespace:
|
||||||
|
def dir_path(path):
|
||||||
|
if os.path.isdir(path):
|
||||||
|
return path
|
||||||
|
else:
|
||||||
|
raise argparse.ArgumentTypeError(f"readable_dir:{path} is not a valid path")
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
"probs", description="Calculating probability from finished bayesrun"
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--log_file",
|
||||||
|
type=str,
|
||||||
|
help="A filename for logging to, if not provided will only log to stderr",
|
||||||
|
default=None,
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--bayesrun-directory",
|
||||||
|
"-d",
|
||||||
|
type=dir_path,
|
||||||
|
help="The directory to search for bayesrun files, defaulting to cwd if not passed",
|
||||||
|
default=".",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--indexify-json",
|
||||||
|
help="A json file with the indexify config for parsing job indexes",
|
||||||
|
default="indexes.json",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--seed-index",
|
||||||
|
type=int,
|
||||||
|
help='take an integer to append as a "seed" key with range at end of indexify dict. Skip if <= 0',
|
||||||
|
default=0,
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--seed-fieldname",
|
||||||
|
type=str,
|
||||||
|
help='if --seed-index is set, the fieldname to append to the indexifier. "seed" by default',
|
||||||
|
default="seed",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--coalesced-keys",
|
||||||
|
type=str,
|
||||||
|
help="A comma separated list of strings over which to coalesce data. By default coalesce over all fields within model names, ignore file level names",
|
||||||
|
default="",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--uncoalesced-outfile",
|
||||||
|
type=str,
|
||||||
|
help="output filename for uncoalesced data. If not provided, will not be written",
|
||||||
|
default=None,
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--coalesced-outfile",
|
||||||
|
type=str,
|
||||||
|
help="output filename for coalesced data. If not provided, will not be written",
|
||||||
|
default=None,
|
||||||
|
)
|
||||||
|
return parser.parse_args()
|
137
deepdog/cli/probs/dicts.py
Normal file
137
deepdog/cli/probs/dicts.py
Normal file
@@ -0,0 +1,137 @@
|
|||||||
|
import typing
|
||||||
|
from deepdog.results import BayesrunOutput
|
||||||
|
import logging
|
||||||
|
import csv
|
||||||
|
|
||||||
|
_logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
def build_model_dict(
|
||||||
|
bayes_outputs: typing.Sequence[BayesrunOutput],
|
||||||
|
) -> typing.Dict[
|
||||||
|
typing.Tuple, typing.Dict[typing.Tuple, typing.Dict["str", typing.Any]]
|
||||||
|
]:
|
||||||
|
"""
|
||||||
|
Maybe someday do something smarter with the coalescing and stuff but don't want to so i won't
|
||||||
|
"""
|
||||||
|
# assume that everything is well formatted and the keys are the same across entire list and initialise list of keys.
|
||||||
|
# model dict will contain a model_key: {calculation_dict} where each calculation_dict represents a single calculation for that model,
|
||||||
|
# the uncoalesced version, keyed by the specific file keys
|
||||||
|
model_dict: typing.Dict[
|
||||||
|
typing.Tuple, typing.Dict[typing.Tuple, typing.Dict["str", typing.Any]]
|
||||||
|
] = {}
|
||||||
|
|
||||||
|
for out in bayes_outputs:
|
||||||
|
for model_result in out.results:
|
||||||
|
model_key = tuple(v for v in model_result.parsed_model_keys.values())
|
||||||
|
if model_key not in model_dict:
|
||||||
|
model_dict[model_key] = {}
|
||||||
|
calculation_dict = model_dict[model_key]
|
||||||
|
calculation_key = tuple(v for v in out.data.values())
|
||||||
|
if calculation_key not in calculation_dict:
|
||||||
|
calculation_dict[calculation_key] = {
|
||||||
|
"_model_key_dict": model_result.parsed_model_keys,
|
||||||
|
"_calculation_key_dict": out.data,
|
||||||
|
"success": model_result.success,
|
||||||
|
"count": model_result.count,
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
f"Got {calculation_key} twice for model_key {model_key}"
|
||||||
|
)
|
||||||
|
|
||||||
|
return model_dict
|
||||||
|
|
||||||
|
|
||||||
|
def write_uncoalesced_dict(
|
||||||
|
uncoalesced_output_filename: typing.Optional[str],
|
||||||
|
uncoalesced_model_dict: typing.Dict[
|
||||||
|
typing.Tuple, typing.Dict[typing.Tuple, typing.Dict["str", typing.Any]]
|
||||||
|
],
|
||||||
|
):
|
||||||
|
if uncoalesced_output_filename is None or uncoalesced_output_filename == "":
|
||||||
|
_logger.warning("Not provided a uncoalesced filename, not going to try")
|
||||||
|
return
|
||||||
|
|
||||||
|
first_value = next(iter(next(iter(uncoalesced_model_dict.values())).values()))
|
||||||
|
model_field_names = set(first_value["_model_key_dict"].keys())
|
||||||
|
calculation_field_names = set(first_value["_calculation_key_dict"].keys())
|
||||||
|
if not (set(model_field_names).isdisjoint(calculation_field_names)):
|
||||||
|
_logger.info(f"Detected model field names {model_field_names}")
|
||||||
|
_logger.info(f"Detected calculation field names {calculation_field_names}")
|
||||||
|
raise ValueError(
|
||||||
|
f"model field names {model_field_names} and calculation {calculation_field_names} have an overlap, which is possibly a problem"
|
||||||
|
)
|
||||||
|
collected_fieldnames = list(model_field_names)
|
||||||
|
collected_fieldnames.extend(calculation_field_names)
|
||||||
|
collected_fieldnames.extend(["success", "count"])
|
||||||
|
_logger.info(f"Full uncoalesced fieldnames are {collected_fieldnames}")
|
||||||
|
with open(uncoalesced_output_filename, "w", newline="") as uncoalesced_output_file:
|
||||||
|
writer = csv.DictWriter(
|
||||||
|
uncoalesced_output_file, fieldnames=collected_fieldnames
|
||||||
|
)
|
||||||
|
writer.writeheader()
|
||||||
|
|
||||||
|
for model_dict in uncoalesced_model_dict.values():
|
||||||
|
for calculation in model_dict.values():
|
||||||
|
row = calculation["_model_key_dict"].copy()
|
||||||
|
row.update(calculation["_calculation_key_dict"].copy())
|
||||||
|
row.update(
|
||||||
|
{
|
||||||
|
"success": calculation["success"],
|
||||||
|
"count": calculation["count"],
|
||||||
|
}
|
||||||
|
)
|
||||||
|
writer.writerow(row)
|
||||||
|
|
||||||
|
|
||||||
|
def coalesced_dict(
|
||||||
|
uncoalesced_model_dict: typing.Dict[
|
||||||
|
typing.Tuple, typing.Dict[typing.Tuple, typing.Dict["str", typing.Any]]
|
||||||
|
]
|
||||||
|
):
|
||||||
|
coalesced_dict = {}
|
||||||
|
for model_key, model_dict in uncoalesced_model_dict.items():
|
||||||
|
for calculation in model_dict.values():
|
||||||
|
if model_key not in coalesced_dict:
|
||||||
|
coalesced_dict[model_key] = {
|
||||||
|
"_model_key_dict": calculation["_model_key_dict"].copy(),
|
||||||
|
"calculations_coalesced": 0,
|
||||||
|
"count": 0,
|
||||||
|
"success": 0,
|
||||||
|
}
|
||||||
|
sub_dict = coalesced_dict[model_key]
|
||||||
|
sub_dict["calculations_coalesced"] += 1
|
||||||
|
sub_dict["count"] += calculation["count"]
|
||||||
|
sub_dict["success"] += calculation["success"]
|
||||||
|
return coalesced_dict
|
||||||
|
|
||||||
|
|
||||||
|
def write_coalesced_dict(
|
||||||
|
coalesced_output_filename: typing.Optional[str],
|
||||||
|
coalesced_model_dict: typing.Dict[typing.Tuple, typing.Dict["str", typing.Any]],
|
||||||
|
):
|
||||||
|
if coalesced_output_filename is None or coalesced_output_filename == "":
|
||||||
|
_logger.warning("Not provided a uncoalesced filename, not going to try")
|
||||||
|
return
|
||||||
|
|
||||||
|
first_value = next(iter(coalesced_model_dict.values()))
|
||||||
|
model_field_names = set(first_value["_model_key_dict"].keys())
|
||||||
|
_logger.info(f"Detected model field names {model_field_names}")
|
||||||
|
|
||||||
|
collected_fieldnames = list(model_field_names)
|
||||||
|
collected_fieldnames.extend(["calculations_coalesced", "success", "count"])
|
||||||
|
with open(coalesced_output_filename, "w", newline="") as coalesced_output_file:
|
||||||
|
writer = csv.DictWriter(coalesced_output_file, fieldnames=collected_fieldnames)
|
||||||
|
writer.writeheader()
|
||||||
|
|
||||||
|
for model_dict in coalesced_model_dict.values():
|
||||||
|
row = model_dict["_model_key_dict"].copy()
|
||||||
|
row.update(
|
||||||
|
{
|
||||||
|
"calculations_coalesced": model_dict["calculations_coalesced"],
|
||||||
|
"success": model_dict["success"],
|
||||||
|
"count": model_dict["count"],
|
||||||
|
}
|
||||||
|
)
|
||||||
|
writer.writerow(row)
|
80
deepdog/cli/probs/main.py
Normal file
80
deepdog/cli/probs/main.py
Normal file
@@ -0,0 +1,80 @@
|
|||||||
|
import logging
|
||||||
|
import argparse
|
||||||
|
import json
|
||||||
|
import deepdog.cli.probs.args
|
||||||
|
import deepdog.cli.probs.dicts
|
||||||
|
import deepdog.results
|
||||||
|
import deepdog.indexify
|
||||||
|
import pathlib
|
||||||
|
|
||||||
|
_logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
def set_up_logging(log_file: str):
|
||||||
|
|
||||||
|
log_pattern = "%(asctime)s | %(levelname)-7s | %(name)s:%(lineno)d | %(message)s"
|
||||||
|
if log_file is None:
|
||||||
|
handlers = [
|
||||||
|
logging.StreamHandler(),
|
||||||
|
]
|
||||||
|
else:
|
||||||
|
handlers = [logging.StreamHandler(), logging.FileHandler(log_file)]
|
||||||
|
logging.basicConfig(
|
||||||
|
level=logging.DEBUG,
|
||||||
|
format=log_pattern,
|
||||||
|
# it's okay to ignore this mypy error because who cares about logger handler types
|
||||||
|
handlers=handlers, # type: ignore
|
||||||
|
)
|
||||||
|
logging.captureWarnings(True)
|
||||||
|
|
||||||
|
|
||||||
|
def wrapped_main(args: argparse.Namespace):
|
||||||
|
"""
|
||||||
|
Main function with passed in arguments and no additional logging setup in case we want to extract out later
|
||||||
|
"""
|
||||||
|
_logger.info(f"args: {args}")
|
||||||
|
|
||||||
|
if args.coalesced_keys:
|
||||||
|
raise NotImplementedError(
|
||||||
|
"Currently not supporting coalesced keys, but maybe in future"
|
||||||
|
)
|
||||||
|
with open(args.indexify_json, "r") as indexify_json_file:
|
||||||
|
indexify_data = json.load(indexify_json_file)
|
||||||
|
if args.seed_index > 0:
|
||||||
|
indexify_data[args.seed_fieldname] = list(range(args.seed_index))
|
||||||
|
# _logger.debug(f"Indexifier data looks like {indexify_data}")
|
||||||
|
indexifier = deepdog.indexify.Indexifier(indexify_data)
|
||||||
|
|
||||||
|
bayes_dir = pathlib.Path(args.bayesrun_directory)
|
||||||
|
out_files = [f for f in bayes_dir.iterdir() if f.name.endswith("bayesrun.csv")]
|
||||||
|
_logger.info(
|
||||||
|
f"Found {len(out_files)} bayesrun.csv files in directory {args.bayesrun_directory}"
|
||||||
|
)
|
||||||
|
# _logger.info(out_files)
|
||||||
|
parsed_output_files = [
|
||||||
|
deepdog.results.read_output_file(f, indexifier) for f in out_files
|
||||||
|
]
|
||||||
|
|
||||||
|
_logger.info("building uncoalesced dict")
|
||||||
|
uncoalesced_dict = deepdog.cli.probs.dicts.build_model_dict(parsed_output_files)
|
||||||
|
|
||||||
|
if args.uncoalesced_outfile:
|
||||||
|
deepdog.cli.probs.dicts.write_uncoalesced_dict(
|
||||||
|
args.uncoalesced_outfile, uncoalesced_dict
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
_logger.info("Skipping writing uncoalesced")
|
||||||
|
|
||||||
|
_logger.info("building coalesced dict")
|
||||||
|
coalesced = deepdog.cli.probs.dicts.coalesced_dict(uncoalesced_dict)
|
||||||
|
|
||||||
|
if args.coalesced_outfile:
|
||||||
|
deepdog.cli.probs.dicts.write_coalesced_dict(args.coalesced_outfile, coalesced)
|
||||||
|
else:
|
||||||
|
_logger.info("Skipping writing coalesced")
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = deepdog.cli.probs.args.parse_args()
|
||||||
|
set_up_logging(args.log_file)
|
||||||
|
wrapped_main(args)
|
58
deepdog/indexify/__init__.py
Normal file
58
deepdog/indexify/__init__.py
Normal file
@@ -0,0 +1,58 @@
|
|||||||
|
"""
|
||||||
|
Probably should just include a way to handle the indexify function I reuse so much.
|
||||||
|
|
||||||
|
All about breaking an integer into a tuple of values from lists, which is useful because of how we do CHTC runs.
|
||||||
|
"""
|
||||||
|
import itertools
|
||||||
|
import typing
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
|
||||||
|
_logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
# from https://stackoverflow.com/questions/5228158/cartesian-product-of-a-dictionary-of-lists
|
||||||
|
def _dict_product(dicts):
|
||||||
|
"""
|
||||||
|
>>> list(dict_product(dict(number=[1,2], character='ab')))
|
||||||
|
[{'character': 'a', 'number': 1},
|
||||||
|
{'character': 'a', 'number': 2},
|
||||||
|
{'character': 'b', 'number': 1},
|
||||||
|
{'character': 'b', 'number': 2}]
|
||||||
|
"""
|
||||||
|
return list(dict(zip(dicts.keys(), x)) for x in itertools.product(*dicts.values()))
|
||||||
|
|
||||||
|
|
||||||
|
class Indexifier:
|
||||||
|
"""
|
||||||
|
The order of keys is very important, but collections.OrderedDict is no longer needed in python 3.7.
|
||||||
|
I think it's okay to rely on that.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, list_dict: typing.Dict[str, typing.Sequence]):
|
||||||
|
self.dict = list_dict
|
||||||
|
|
||||||
|
def indexify(self, n: int) -> typing.Dict[str, typing.Any]:
|
||||||
|
product_dict = _dict_product(self.dict)
|
||||||
|
return product_dict[n]
|
||||||
|
|
||||||
|
def _indexify_indices(self, n: int) -> typing.Sequence[int]:
|
||||||
|
"""
|
||||||
|
legacy indexify from old scripts, copypast.
|
||||||
|
could be used like
|
||||||
|
>>> ret = {}
|
||||||
|
>>> for k, i in zip(self.dict.keys(), self._indexify_indices):
|
||||||
|
>>> ret[k] = self.dict[k][i]
|
||||||
|
>>> return ret
|
||||||
|
"""
|
||||||
|
weights = [len(v) for v in self.dict.values()]
|
||||||
|
N = math.prod(weights)
|
||||||
|
curr_n = n
|
||||||
|
curr_N = N
|
||||||
|
out = []
|
||||||
|
for w in weights[:-1]:
|
||||||
|
# print(f"current: {curr_N}, {curr_n}, {curr_n // w}")
|
||||||
|
curr_N = curr_N // w # should be int division anyway
|
||||||
|
out.append(curr_n // curr_N)
|
||||||
|
curr_n = curr_n % curr_N
|
||||||
|
return out
|
169
deepdog/results/__init__.py
Normal file
169
deepdog/results/__init__.py
Normal file
@@ -0,0 +1,169 @@
|
|||||||
|
import dataclasses
|
||||||
|
import re
|
||||||
|
import typing
|
||||||
|
import logging
|
||||||
|
import deepdog.indexify
|
||||||
|
import pathlib
|
||||||
|
import csv
|
||||||
|
|
||||||
|
_logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
FILENAME_REGEX = r"(?P<timestamp>\d{8}-\d{6})-(?P<filename_slug>.*)\.realdata\.fast_filter\.bayesrun\.csv"
|
||||||
|
|
||||||
|
MODEL_REGEXES = [
|
||||||
|
r"geom_(?P<xmin>-?\d+)_(?P<xmax>-?\d+)_(?P<ymin>-?\d+)_(?P<ymax>-?\d+)_(?P<zmin>-?\d+)_(?P<zmax>-?\d+)-orientation_(?P<orientation>free|fixedxy|fixedz)-dipole_count_(?P<avg_filled>\d+)_(?P<field_name>\w*)"
|
||||||
|
]
|
||||||
|
|
||||||
|
FILE_SLUG_REGEXES = [
|
||||||
|
r"mock_tarucha-(?P<job_index>\d+)",
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
@dataclasses.dataclass
|
||||||
|
class BayesrunOutputFilename:
|
||||||
|
timestamp: str
|
||||||
|
filename_slug: str
|
||||||
|
path: pathlib.Path
|
||||||
|
|
||||||
|
|
||||||
|
@dataclasses.dataclass
|
||||||
|
class BayesrunColumnParsed:
|
||||||
|
"""
|
||||||
|
class for parsing a bayesrun while pulling certain special fields out
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, groupdict: typing.Dict[str, str]):
|
||||||
|
self.column_field = groupdict["field_name"]
|
||||||
|
self.model_field_dict = {
|
||||||
|
k: v for k, v in groupdict.items() if k != "field_name"
|
||||||
|
}
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
return f"BayesrunColumnParsed[{self.column_field}: {self.model_field_dict}]"
|
||||||
|
|
||||||
|
|
||||||
|
@dataclasses.dataclass
|
||||||
|
class BayesrunModelResult:
|
||||||
|
parsed_model_keys: typing.Dict[str, str]
|
||||||
|
success: int
|
||||||
|
count: int
|
||||||
|
|
||||||
|
|
||||||
|
@dataclasses.dataclass
|
||||||
|
class BayesrunOutput:
|
||||||
|
filename: BayesrunOutputFilename
|
||||||
|
data: typing.Dict["str", typing.Any]
|
||||||
|
results: typing.Sequence[BayesrunModelResult]
|
||||||
|
|
||||||
|
|
||||||
|
def _batch_iterable_into_chunks(iterable, n=1):
|
||||||
|
"""
|
||||||
|
utility for batching bayesrun files where columns appear in threes
|
||||||
|
"""
|
||||||
|
for ndx in range(0, len(iterable), n):
|
||||||
|
yield iterable[ndx : min(ndx + n, len(iterable))]
|
||||||
|
|
||||||
|
|
||||||
|
def _parse_bayesrun_column(
|
||||||
|
column: str,
|
||||||
|
) -> typing.Optional[BayesrunColumnParsed]:
|
||||||
|
"""
|
||||||
|
Tries one by one all of a predefined list of regexes that I might have used in the past.
|
||||||
|
Returns the groupdict for the first match, or None if no match found.
|
||||||
|
"""
|
||||||
|
for pattern in MODEL_REGEXES:
|
||||||
|
match = re.match(pattern, column)
|
||||||
|
if match:
|
||||||
|
return BayesrunColumnParsed(match.groupdict())
|
||||||
|
else:
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
def _parse_bayesrun_row(
|
||||||
|
row: typing.Dict[str, str],
|
||||||
|
) -> typing.Sequence[BayesrunModelResult]:
|
||||||
|
|
||||||
|
results = []
|
||||||
|
batched_keys = _batch_iterable_into_chunks(list(row.keys()), 3)
|
||||||
|
for model_keys in batched_keys:
|
||||||
|
parsed = [_parse_bayesrun_column(column) for column in model_keys]
|
||||||
|
values = [row[column] for column in model_keys]
|
||||||
|
if parsed[0] is None:
|
||||||
|
raise ValueError(f"no viable success row found for keys {model_keys}")
|
||||||
|
if parsed[1] is None:
|
||||||
|
raise ValueError(f"no viable count row found for keys {model_keys}")
|
||||||
|
if parsed[0].column_field != "success":
|
||||||
|
raise ValueError(f"The column {model_keys[0]} is not a success field")
|
||||||
|
if parsed[1].column_field != "count":
|
||||||
|
raise ValueError(f"The column {model_keys[1]} is not a count field")
|
||||||
|
parsed_keys = parsed[0].model_field_dict
|
||||||
|
success = int(values[0])
|
||||||
|
count = int(values[1])
|
||||||
|
results.append(
|
||||||
|
BayesrunModelResult(
|
||||||
|
parsed_model_keys=parsed_keys,
|
||||||
|
success=success,
|
||||||
|
count=count,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def _parse_output_filename(file: pathlib.Path) -> BayesrunOutputFilename:
|
||||||
|
filename = file.name
|
||||||
|
match = re.match(FILENAME_REGEX, filename)
|
||||||
|
if not match:
|
||||||
|
raise ValueError(f"{filename} was not a valid bayesrun output")
|
||||||
|
groups = match.groupdict()
|
||||||
|
return BayesrunOutputFilename(
|
||||||
|
timestamp=groups["timestamp"], filename_slug=groups["filename_slug"], path=file
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def _parse_file_slug(slug: str) -> typing.Optional[typing.Dict[str, str]]:
|
||||||
|
for pattern in FILE_SLUG_REGEXES:
|
||||||
|
match = re.match(pattern, slug)
|
||||||
|
if match:
|
||||||
|
return match.groupdict()
|
||||||
|
else:
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
def read_output_file(
|
||||||
|
file: pathlib.Path, indexifier: typing.Optional[deepdog.indexify.Indexifier]
|
||||||
|
) -> BayesrunOutput:
|
||||||
|
|
||||||
|
parsed_filename = tag = _parse_output_filename(file)
|
||||||
|
out = BayesrunOutput(filename=parsed_filename, data={}, results=[])
|
||||||
|
|
||||||
|
out.data.update(dataclasses.asdict(tag))
|
||||||
|
parsed_tag = _parse_file_slug(parsed_filename.filename_slug)
|
||||||
|
if parsed_tag is None:
|
||||||
|
_logger.warning(
|
||||||
|
f"Could not parse {tag} against any matching regexes. Going to skip tag parsing"
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
out.data.update(parsed_tag)
|
||||||
|
if indexifier is not None:
|
||||||
|
try:
|
||||||
|
job_index = parsed_tag["job_index"]
|
||||||
|
indexified = indexifier.indexify(int(job_index))
|
||||||
|
out.data.update(indexified)
|
||||||
|
except KeyError:
|
||||||
|
# This isn't really that important of an error, apart from the warning
|
||||||
|
_logger.warning(
|
||||||
|
f"Parsed tag to {parsed_tag}, and attempted to indexify but no job_index key was found. skipping and moving on"
|
||||||
|
)
|
||||||
|
|
||||||
|
with file.open() as input_file:
|
||||||
|
reader = csv.DictReader(input_file)
|
||||||
|
rows = [r for r in reader]
|
||||||
|
if len(rows) == 1:
|
||||||
|
row = rows[0]
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Confused about having multiple rows in {file.name}")
|
||||||
|
results = _parse_bayesrun_row(row)
|
||||||
|
|
||||||
|
out.results = results
|
||||||
|
|
||||||
|
return out
|
@@ -19,6 +19,9 @@ python-semantic-release = "^7.24.0"
|
|||||||
black = "^22.3.0"
|
black = "^22.3.0"
|
||||||
syrupy = "^4.0.8"
|
syrupy = "^4.0.8"
|
||||||
|
|
||||||
|
[tool.poetry.scripts]
|
||||||
|
probs = "deepdog.cli.probs:main"
|
||||||
|
|
||||||
[build-system]
|
[build-system]
|
||||||
requires = ["poetry-core>=1.0.0"]
|
requires = ["poetry-core>=1.0.0"]
|
||||||
build-backend = "poetry.core.masonry.api"
|
build-backend = "poetry.core.masonry.api"
|
||||||
|
0
tests/indexify/__init__.py
Normal file
0
tests/indexify/__init__.py
Normal file
12
tests/indexify/test_indexify.py
Normal file
12
tests/indexify/test_indexify.py
Normal file
@@ -0,0 +1,12 @@
|
|||||||
|
import deepdog.indexify
|
||||||
|
import logging
|
||||||
|
|
||||||
|
_logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
def test_indexifier():
|
||||||
|
weight_dict = {"key_1": [1, 2, 3], "key_2": ["a", "b", "c"]}
|
||||||
|
indexifier = deepdog.indexify.Indexifier(weight_dict)
|
||||||
|
_logger.debug(f"setting up indexifier {indexifier}")
|
||||||
|
assert indexifier.indexify(0) == {"key_1": 1, "key_2": "a"}
|
||||||
|
assert indexifier.indexify(5) == {"key_1": 2, "key_2": "c"}
|
0
tests/results/__init__.py
Normal file
0
tests/results/__init__.py
Normal file
28
tests/results/test_column_results.py
Normal file
28
tests/results/test_column_results.py
Normal file
@@ -0,0 +1,28 @@
|
|||||||
|
import deepdog.results
|
||||||
|
|
||||||
|
|
||||||
|
def test_parse_groupdict():
|
||||||
|
example_column_name = (
|
||||||
|
"geom_-20_20_-10_10_0_5-orientation_free-dipole_count_100_success"
|
||||||
|
)
|
||||||
|
|
||||||
|
parsed = deepdog.results._parse_bayesrun_column(example_column_name)
|
||||||
|
expected = deepdog.results.BayesrunColumnParsed(
|
||||||
|
{
|
||||||
|
"xmin": "-20",
|
||||||
|
"xmax": "20",
|
||||||
|
"ymin": "-10",
|
||||||
|
"ymax": "10",
|
||||||
|
"zmin": "0",
|
||||||
|
"zmax": "5",
|
||||||
|
"orientation": "free",
|
||||||
|
"avg_filled": "100",
|
||||||
|
"field_name": "success",
|
||||||
|
}
|
||||||
|
)
|
||||||
|
assert parsed == expected
|
||||||
|
|
||||||
|
|
||||||
|
# def test_parse_no_match_column_name():
|
||||||
|
# parsed = deepdog.results.parse_bayesrun_column("There's nothing here")
|
||||||
|
# assert parsed is None
|
Reference in New Issue
Block a user