refactor: removes redundant calculation and uses pdme

This commit is contained in:
Deepak Mallubhotla 2024-05-02 23:12:21 -05:00
parent df4d0b5d15
commit 62bd63bf9b
Signed by: deepak
GPG Key ID: BEBAEBF28083E022
3 changed files with 138 additions and 97 deletions

View File

@ -54,109 +54,13 @@ class SingleDotSpinQubitFrequencyFilter(DirectMonteCarloFilter):
self.measurements self.measurements
) )
# oh no not this again
def fast_s_spin_qubit_tarucha_apsd_dipoleses(
self, dot_inputs: numpy.ndarray, dipoleses: numpy.ndarray
) -> numpy.ndarray:
"""
No error correction here baby.
"""
# We're going to annotate the indices on this class.
# Let's define some indices:
# A -> index of dipoleses configurations
# j -> within a particular configuration, indexes dipole j
# measurement_index -> if we have 100 frequencies for example, indexes which one of them it is
# If we need to use numbers, let's use A -> 2, j -> 10, measurement_index -> 9 for consistency with
# my other notes
# axes are [dipole_config_idx A, dipole_idx j, {px, py, pz}3]
ps = dipoleses[:, :, 0:3]
# axes are [dipole_config_idx A, dipole_idx j, {sx, sy, sz}3]
ss = dipoleses[:, :, 3:6]
# axes are [dipole_config_idx A, dipole_idx j, w], last axis is just 1
ws = dipoleses[:, :, 6]
# dot_index is either 0 or 1 for dot1 or dot2
# hopefully this adhoc grammar is making sense, with the explicit labelling of the values of the last axis in cartesian space
# axes are [measurement_idx, {dot_index}, {rx, ry, rz}] where the inner {dot_index} is gone
# [measurement_idx, cartesian3]
rs = dot_inputs[:, 0:3]
# axes are [measurement_idx]
fs = dot_inputs[:, 3]
# first operation!
# r1s has shape [measurement_idx, rxs]
# None inserts an extra axis so the r1s[:, None] has shape
# [measurement_idx, 1]([rxs]) with the last rxs hidden
#
# ss has shape [ A, j, {sx, sy, sz}3], so second term has shape [A, 1, j]([sxs])
# these broadcast from right to left
# [ measurement_idx, 1, rxs]
# [A, 1, j, sxs]
# resulting in [A, measurement_idx, j, cart3] sxs rxs are both cart3
diffses = rs[:, None] - ss[:, None, :]
# norms takes out axis 3, the last one, giving [A, measurement_idx, j]
norms = numpy.linalg.norm(diffses, axis=3)
# _logger.info(f"norms1: {norms1}")
# _logger.info(f"norms1 shape: {norms1.shape}")
#
# diffses1 (A, measurement_idx, j, xs)
# ps: (A, j, px)
# result is (A, measurement_idx, j)
# intermediate_dot_prod = numpy.einsum("abcd,acd->abc", diffses1, ps)
# _logger.info(f"dot product shape: {intermediate_dot_prod.shape}")
# transpose makes it (j, measurement_idx, A)
# transp_intermediate_dot_prod = numpy.transpose(numpy.einsum("abcd,acd->abc", diffses1, ps) / (norms1**3))
# transpose of diffses has shape (xs, j, measurement_idx, A)
# numpy.transpose(diffses1)
# _logger.info(f"dot product shape: {transp_intermediate_dot_prod.shape}")
# inner transpose is (j, measurement_idx, A) * (xs, j, measurement_idx, A)
# next transpose puts it back to (A, measurement_idx, j, xs)
# p_dot_r_times_r_term = 3 * numpy.transpose(numpy.transpose(numpy.einsum("abcd,acd->abc", diffses1, ps) / (norms1**3)) * numpy.transpose(diffses1))
# _logger.info(f"p_dot_r_times_r_term: {p_dot_r_times_r_term.shape}")
# only x axis puts us at (A, measurement_idx, j)
# p_dot_r_times_r_term_x_only = p_dot_r_times_r_term[:, :, :, 0]
# _logger.info(f"p_dot_r_times_r_term_x_only.shape: {p_dot_r_times_r_term_x_only.shape}")
# now to complete the numerator we subtract the ps, which are (A, j, px):
# slicing off the end gives us (A, j), so we newaxis to get (A, 1, j)
# _logger.info(ps[:, numpy.newaxis, :, 0].shape)
alphses = (
(
3
* numpy.transpose(
numpy.transpose(
numpy.einsum("abcd,acd->abc", diffses, ps) / (norms**2)
)
* numpy.transpose(diffses)
)[:, :, :, 0]
)
- ps[:, numpy.newaxis, :, 0]
) / (norms**3)
bses = (
2
* numpy.pi
* ws[:, None, :]
/ ((2 * numpy.pi * fs[:, None]) ** 2 + 4 * ws[:, None, :] ** 2)
)
return numpy.einsum("...j->...", alphses * alphses * bses)
def filter_samples(self, samples: ndarray) -> ndarray: def filter_samples(self, samples: ndarray) -> ndarray:
current_sample = samples current_sample = samples
for di, low, high in zip(self.dot_inputs_array, self.lows, self.highs): for di, low, high in zip(self.dot_inputs_array, self.lows, self.highs):
if len(current_sample) < 1: if len(current_sample) < 1:
break break
vals = self.fast_s_spin_qubit_tarucha_apsd_dipoleses( vals = pdme.util.fast_v_calc.fast_efieldxs_for_dipoleses(
numpy.array([di]), current_sample numpy.array([di]), current_sample
) )
# _logger.info(vals) # _logger.info(vals)

View File

View File

@ -0,0 +1,137 @@
import pdme.measurement
import pdme.measurement.input_types
from pdme.model import (
LogSpacedRandomCountMultipleDipoleFixedMagnitudeModel,
LogSpacedRandomCountMultipleDipoleFixedMagnitudeXYModel,
LogSpacedRandomCountMultipleDipoleFixedMagnitudeFixedOrientationModel,
)
import deepdog.direct_monte_carlo.dmc_filters
import numpy.random
import numpy.testing
import logging
_logger = logging.getLogger(__name__)
def fixed_z_model_func(
xmin,
xmax,
ymin,
ymax,
zmin,
zmax,
wexp_min,
wexp_max,
pfixed,
n_max,
prob_occupancy,
):
return LogSpacedRandomCountMultipleDipoleFixedMagnitudeFixedOrientationModel(
xmin,
xmax,
ymin,
ymax,
zmin,
zmax,
wexp_min,
wexp_max,
pfixed,
0,
0,
n_max,
prob_occupancy,
)
def get_model(orientation):
model_funcs = {
"fixedz": fixed_z_model_func,
"free": LogSpacedRandomCountMultipleDipoleFixedMagnitudeModel,
"fixedxy": LogSpacedRandomCountMultipleDipoleFixedMagnitudeXYModel,
}
model = model_funcs[orientation](
-10,
10,
-17.5,
17.5,
5,
7.5,
-5,
6.5,
10**3,
2,
0.99999999,
)
model.n = 2
model.rng = numpy.random.default_rng(1234)
return (
f"connors_geom-5height-orientation_{orientation}-pfixexp_{3}-dipole_count_{2}",
model,
)
def test_electric_field_x_dmc_filter():
dipoles_raw = [
[(1, 2, 3), (4, 5, 6), 1],
[(-1, 5, 2), (6, 5, 4), 10],
]
dipoles = [
pdme.measurement.OscillatingDipole(numpy.array(d[0]), numpy.array(d[1]), d[2])
for d in dipoles_raw
]
_logger.debug(f"dipoles: {dipoles}")
dot_inputs_raw = [
([-1, -1, 0], 1),
([-1, -1, 0], 2),
([-1, -1, 0], 3),
([-1, -1, 0], 4),
]
dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(dot_inputs_raw)
_logger.debug(f"dot_inputs_array: {dot_inputs_array}")
arrangement = pdme.measurement.OscillatingDipoleArrangement(dipoles)
measurements = []
for input in dot_inputs_raw:
ex = sum(
[
dipole.s_electric_fieldx_at_position(*input)
for dipole in arrangement.dipoles
]
)
ex_low = ex * 0.5
ex_high = ex * 1.5
meas = pdme.measurement.DotRangeMeasurement(ex_low, ex_high, input[0], input[1])
measurements.append(meas)
filter = deepdog.direct_monte_carlo.dmc_filters.SingleDotSpinQubitFrequencyFilter(
measurements
)
samples = numpy.array(
[
[
[1, 2, 3, 4, 5, 6, 1],
[-1, 5, 2, 6, 5, 4, 10],
],
[
[10, 20, 30, 40, 50, 60, 1],
[-1, 5, 2, 6, 5, 4, 1],
],
[
[1, 1, 1, 1, 1, 1, 1],
[2, 2, 2, 2, 2, 2, 1],
],
]
)
expected = samples[
0:1
] # only expect to see the first guy, because that's what generated our thing
filtered = filter.filter_samples(samples)
assert len(filtered) != len(samples), "Should have filtered some out!"
numpy.testing.assert_array_equal(
filtered, expected, "The filter should have only returned the first one"
)