diff --git a/deepdog/real_spectrum_run.py b/deepdog/real_spectrum_run.py index d2ed746..24d30fa 100644 --- a/deepdog/real_spectrum_run.py +++ b/deepdog/real_spectrum_run.py @@ -20,18 +20,6 @@ CHUNKSIZE = 50 _logger = logging.getLogger(__name__) -def get_a_result(input) -> int: - model, dot_inputs, lows, highs, monte_carlo_count, seed = input - - rng = numpy.random.default_rng(seed) - # TODO: A long term refactor is to pull the frequency stuff out from here. The None stands for max_frequency, which is unneeded in the actually useful models. - sample_dipoles = model.get_monte_carlo_dipole_inputs( - monte_carlo_count, None, rng_to_use=rng - ) - vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(dot_inputs, sample_dipoles) - return numpy.count_nonzero(pdme.util.fast_v_calc.between(vals, lows, highs)) - - def get_a_result_fast_filter_pairs(input) -> int: ( model, @@ -133,7 +121,6 @@ class RealSpectrumRun: max_monte_carlo_cycles_steps: int = 10, chunksize: int = CHUNKSIZE, initial_seed: int = 12345, - use_fast_filter: bool = True, cap_core_count: int = 0, pair_measurements: Optional[ Sequence[pdme.measurement.DotPairRangeMeasurement] @@ -181,10 +168,9 @@ class RealSpectrumRun: self.probabilities = [1 / self.model_count] * self.model_count timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") - self.use_fast_filter = use_fast_filter - ff_string = "no_fast_filter" - if self.use_fast_filter: - ff_string = "fast_filter" + + ff_string = "fast_filter" + self.filename = f"{timestamp}-{filename_slug}.realdata.{ff_string}.bayesrun.csv" self.initial_seed = initial_seed @@ -264,13 +250,10 @@ class RealSpectrumRun: ) ) else: - if self.use_fast_filter: - result_func = get_a_result_fast_filter - else: - result_func = get_a_result + current_success = sum( pool.imap_unordered( - result_func, + get_a_result_fast_filter, [ ( model,