diff --git a/deepdog/subset_simulation/subset_simulation_impl.py b/deepdog/subset_simulation/subset_simulation_impl.py index ebcaeb2..e2dab92 100644 --- a/deepdog/subset_simulation/subset_simulation_impl.py +++ b/deepdog/subset_simulation/subset_simulation_impl.py @@ -120,7 +120,7 @@ class SubsetSimulation: mcmc_rng = numpy.random.default_rng(self.mcmc_seed) for i in range(self.m_max): - next_seeds = all_chains[-self.n_c:] + next_seeds = all_chains[-self.n_c :] if self.dump_last_generations: _logger.info("writing out csv file") @@ -153,7 +153,9 @@ class SubsetSimulation: for seed_index, (c, s) in enumerate(next_seeds): # chain = mcmc(s, threshold_cost, n_s, model, dot_inputs_array, actual_measurement_array, mcmc_rng, curr_cost=c, stdevs=stdevs) # until new version gotta do - _logger.debug(f"\t{seed_index}: getting another chain from the next seed") + _logger.debug( + f"\t{seed_index}: getting another chain from the next seed" + ) chain = self.model.get_mcmc_chain( s, self.cost_function_to_use, @@ -242,7 +244,7 @@ class SubsetSimulation: # _logger.info(f"\t{prob}: {prob_cost}") probs_list.sort(key=lambda c: c[0], reverse=True) - min_likelihood = ((1) / (self.n_c * self.n_s)) / (self.n_s ** (self.m_max + 1)) + min_likelihood = ((1) / (self.n_c * self.n_s)) / (self.n_s ** (self.m_max)) result = SubsetSimulationResult( probs_list=probs_list,