feat: adds simulpairs run

This commit is contained in:
Deepak Mallubhotla 2022-04-16 12:54:30 -05:00
parent 1e2657adad
commit e9277c3da7
Signed by: deepak
GPG Key ID: BEBAEBF28083E022

View File

@ -0,0 +1,324 @@
import pdme.inputs
import pdme.model
import pdme.measurement.input_types
import pdme.measurement.oscillating_dipole
import pdme.util.fast_v_calc
import pdme.util.fast_nonlocal_spectrum
from typing import Sequence, Tuple, List
import datetime
import csv
import multiprocessing
import logging
import numpy
# TODO: remove hardcode
CHUNKSIZE = 50
# TODO: It's garbage to have this here duplicated from pdme.
DotInput = Tuple[numpy.typing.ArrayLike, float]
_logger = logging.getLogger(__name__)
def get_a_simul_result_using_pairs(input) -> numpy.ndarray:
(
discretisation,
dot_inputs,
pair_inputs,
local_lows,
local_highs,
nonlocal_lows,
nonlocal_highs,
monte_carlo_count,
max_frequency,
) = input
sample_dipoles = discretisation.get_model().get_n_single_dipoles(
monte_carlo_count, max_frequency
)
local_vals = pdme.util.fast_v_calc.fast_vs_for_dipoles(dot_inputs, sample_dipoles)
local_matches = pdme.util.fast_v_calc.between(local_vals, local_lows, local_highs)
nonlocal_vals = pdme.util.fast_nonlocal_spectrum.fast_s_nonlocal(
pair_inputs, sample_dipoles
)
nonlocal_matches = pdme.util.fast_v_calc.between(
nonlocal_vals, nonlocal_lows, nonlocal_highs
)
combined_matches = numpy.logical_and(local_matches, nonlocal_matches)
return numpy.array(
[numpy.count_nonzero(local_matches), numpy.count_nonzero(combined_matches)]
)
class AltBayesRunSimulPairs:
"""
A dual pairs-nonpairs Bayes run for a given set of dots.
Parameters
----------
dot_inputs : Sequence[DotInput]
The dot inputs for this bayes run.
discretisations_with_names : Sequence[Tuple(str, pdme.model.Model)]
The models to evaluate.
actual_model_discretisation : pdme.model.Discretisation
The discretisation for the model which is actually correct.
filename_slug : str
The filename slug to include.
run_count: int
The number of runs to do.
"""
def __init__(
self,
dot_positions: Sequence[numpy.typing.ArrayLike],
frequency_range: Sequence[float],
discretisations_with_names: Sequence[Tuple[str, pdme.model.Discretisation]],
actual_model: pdme.model.Model,
filename_slug: str,
run_count: int = 100,
low_error: float = 0.9,
high_error: float = 1.1,
pairs_high_error=None,
pairs_low_error=None,
monte_carlo_count: int = 10000,
monte_carlo_cycles: int = 10,
target_success: int = 100,
max_monte_carlo_cycles_steps: int = 10,
max_frequency: float = 20,
end_threshold: float = None,
chunksize: int = CHUNKSIZE,
) -> None:
self.dot_inputs = pdme.inputs.inputs_with_frequency_range(
dot_positions, frequency_range
)
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
self.dot_inputs
)
self.dot_pair_inputs = pdme.inputs.input_pairs_with_frequency_range(
dot_positions, frequency_range
)
self.dot_pair_inputs_array = (
pdme.measurement.input_types.dot_pair_inputs_to_array(self.dot_pair_inputs)
)
self.discretisations = [disc for (_, disc) in discretisations_with_names]
self.model_names = [name for (name, _) in discretisations_with_names]
self.actual_model = actual_model
self.model_count = len(self.discretisations)
self.monte_carlo_count = monte_carlo_count
self.monte_carlo_cycles = monte_carlo_cycles
self.target_success = target_success
self.max_monte_carlo_cycles_steps = max_monte_carlo_cycles_steps
self.run_count = run_count
self.low_error = low_error
self.high_error = high_error
if pairs_low_error is None:
self.pairs_low_error = self.low_error
else:
self.pairs_low_error = pairs_low_error
if pairs_high_error is None:
self.pairs_high_error = self.high_error
else:
self.pairs_high_error = pairs_high_error
self.csv_fields = ["dipole_moment", "dipole_location", "dipole_frequency"]
self.compensate_zeros = True
self.chunksize = chunksize
for name in self.model_names:
self.csv_fields.extend([f"{name}_success", f"{name}_count", f"{name}_prob"])
self.probabilities_no_pairs = [1 / self.model_count] * self.model_count
self.probabilities_pairs = [1 / self.model_count] * self.model_count
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
self.filename_pairs = f"{timestamp}-{filename_slug}.simulpairs.pairs.csv"
self.filename_no_pairs = f"{timestamp}-{filename_slug}.simulpairs.pairs.csv"
self.max_frequency = max_frequency
if end_threshold is not None:
if 0 < end_threshold < 1:
self.end_threshold: float = end_threshold
self.use_end_threshold = True
_logger.info(f"Will abort early, at {self.end_threshold}.")
else:
raise ValueError(
f"end_threshold should be between 0 and 1, but is actually {end_threshold}"
)
def go(self) -> None:
with open(self.filename_pairs, "a", newline="") as outfile:
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
writer.writeheader()
with open(self.filename_no_pairs, "a", newline="") as outfile:
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
writer.writeheader()
for run in range(1, self.run_count + 1):
rng = numpy.random.default_rng()
frequency = rng.uniform(1, self.max_frequency)
# Generate the actual dipoles
actual_dipoles = self.actual_model.get_dipoles(frequency)
dots = actual_dipoles.get_percent_range_dot_measurements(
self.dot_inputs, self.low_error, self.high_error
)
(
lows,
highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
dots
)
pair_lows, pair_highs = (None, None)
pair_measurements = actual_dipoles.get_percent_range_dot_pair_measurements(
self.dot_pair_inputs, self.pairs_low_error, self.pairs_high_error
)
(
pair_lows,
pair_highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
pair_measurements
)
_logger.info(f"Going to work on dipole at {actual_dipoles.dipoles}")
results_pairs = []
results_no_pairs = []
_logger.debug("Going to iterate over discretisations now")
for disc_count, discretisation in enumerate(self.discretisations):
_logger.debug(f"Doing discretisation #{disc_count}")
with multiprocessing.Pool(multiprocessing.cpu_count() - 1 or 1) as pool:
cycle_count = 0
cycle_success_pairs = 0
cycle_success_no_pairs = 0
cycles = 0
while (cycles < self.max_monte_carlo_cycles_steps) and (
min(cycle_success_pairs, cycle_success_no_pairs)
<= self.target_success
):
_logger.debug(f"Starting cycle {cycles}")
cycles += 1
current_success_pairs = 0
current_success_no_pairs = 0
cycle_count += self.monte_carlo_count * self.monte_carlo_cycles
current_success_both = numpy.array(sum(
pool.imap_unordered(
get_a_simul_result_using_pairs,
[
(
discretisation,
self.dot_inputs_array,
self.dot_pair_inputs_array,
lows,
highs,
pair_lows,
pair_highs,
self.monte_carlo_count,
self.max_frequency,
)
]
* self.monte_carlo_cycles,
self.chunksize,
)
))
current_success_no_pairs = current_success_both[0]
current_success_pairs = current_success_both[1]
cycle_success_no_pairs += current_success_no_pairs
cycle_success_pairs += current_success_pairs
results_pairs.append((cycle_count, cycle_success_pairs))
results_no_pairs.append((cycle_count, cycle_success_no_pairs))
_logger.debug("Done, constructing output now")
row_pairs = {
"dipole_moment": actual_dipoles.dipoles[0].p,
"dipole_location": actual_dipoles.dipoles[0].s,
"dipole_frequency": actual_dipoles.dipoles[0].w,
}
row_no_pairs = {
"dipole_moment": actual_dipoles.dipoles[0].p,
"dipole_location": actual_dipoles.dipoles[0].s,
"dipole_frequency": actual_dipoles.dipoles[0].w,
}
successes_pairs: List[float] = []
successes_no_pairs: List[float] = []
counts: List[int] = []
for model_index, (
name,
(count_pair, result_pair),
(count_no_pair, result_no_pair),
) in enumerate(zip(self.model_names, results_pairs, results_no_pairs)):
row_pairs[f"{name}_success"] = result_pair
row_pairs[f"{name}_count"] = count_pair
successes_pairs.append(max(result_pair, 0.5))
row_no_pairs[f"{name}_success"] = result_no_pair
row_no_pairs[f"{name}_count"] = count_no_pair
successes_no_pairs.append(max(result_no_pair, 0.5))
counts.append(count_pair)
success_weight_pair = sum(
[
(succ / count) * prob
for succ, count, prob in zip(
successes_pairs, counts, self.probabilities_pairs
)
]
)
success_weight_no_pair = sum(
[
(succ / count) * prob
for succ, count, prob in zip(
successes_no_pairs, counts, self.probabilities_no_pairs
)
]
)
new_probabilities_pair = [
(succ / count) * old_prob / success_weight_pair
for succ, count, old_prob in zip(
successes_pairs, counts, self.probabilities_pairs
)
]
new_probabilities_no_pair = [
(succ / count) * old_prob / success_weight_no_pair
for succ, count, old_prob in zip(
successes_no_pairs, counts, self.probabilities_no_pairs
)
]
self.probabilities_pairs = new_probabilities_pair
self.probabilities_no_pairs = new_probabilities_no_pair
for name, probability_pair, probability_no_pair in zip(
self.model_names, self.probabilities_pairs, self.probabilities_no_pairs
):
row_pairs[f"{name}_prob"] = probability_pair
row_no_pairs[f"{name}_prob"] = probability_no_pair
_logger.info(row_pairs)
_logger.info(row_no_pairs)
with open(self.filename_pairs, "a", newline="") as outfile:
writer = csv.DictWriter(
outfile, fieldnames=self.csv_fields, dialect="unix"
)
writer.writerow(row_pairs)
with open(self.filename_no_pairs, "a", newline="") as outfile:
writer = csv.DictWriter(
outfile, fieldnames=self.csv_fields, dialect="unix"
)
writer.writerow(row_no_pairs)
if self.use_end_threshold:
max_prob = min(
max(self.probabilities_pairs), max(self.probabilities_no_pairs)
)
if max_prob > self.end_threshold:
_logger.info(
f"Aborting early, because {max_prob} is greater than {self.end_threshold}"
)
break