feat: adds ability to write custom dmc filters
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
This commit is contained in:
@@ -2,7 +2,7 @@ import pdme.model
|
||||
import pdme.measurement
|
||||
import pdme.measurement.input_types
|
||||
import pdme.subspace_simulation
|
||||
from typing import Tuple, Sequence
|
||||
from typing import Tuple, Dict, NewType, Any
|
||||
from dataclasses import dataclass
|
||||
import logging
|
||||
import numpy
|
||||
@@ -30,6 +30,20 @@ class DirectMonteCarloConfig:
|
||||
tag: str = ""
|
||||
|
||||
|
||||
# Aliasing dict as a generic data container
|
||||
DirectMonteCarloData = NewType("DirectMonteCarloData", Dict[str, Any])
|
||||
|
||||
|
||||
class DirectMonteCarloFilter:
|
||||
"""
|
||||
Abstract class for filtering out samples matching some criteria. Initialise with data as needed,
|
||||
then filter out samples as needed.
|
||||
"""
|
||||
|
||||
def filter_samples(self, samples: numpy.ndarray) -> numpy.ndarray:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class DirectMonteCarloRun:
|
||||
"""
|
||||
A single model Direct Monte Carlo run, currently implemented only using single threading.
|
||||
@@ -65,25 +79,26 @@ class DirectMonteCarloRun:
|
||||
def __init__(
|
||||
self,
|
||||
model_name_pair: Tuple[str, pdme.model.DipoleModel],
|
||||
measurements: Sequence[pdme.measurement.DotRangeMeasurement],
|
||||
filter: DirectMonteCarloFilter,
|
||||
config: DirectMonteCarloConfig,
|
||||
):
|
||||
self.model_name, self.model = model_name_pair
|
||||
|
||||
self.measurements = measurements
|
||||
self.dot_inputs = [(measure.r, measure.f) for measure in self.measurements]
|
||||
# self.measurements = measurements
|
||||
# self.dot_inputs = [(measure.r, measure.f) for measure in self.measurements]
|
||||
|
||||
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
|
||||
self.dot_inputs
|
||||
)
|
||||
# self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
|
||||
# self.dot_inputs
|
||||
# )
|
||||
|
||||
self.config = config
|
||||
(
|
||||
self.lows,
|
||||
self.highs,
|
||||
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
|
||||
self.measurements
|
||||
)
|
||||
self.filter = filter
|
||||
# (
|
||||
# self.lows,
|
||||
# self.highs,
|
||||
# ) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
|
||||
# self.measurements
|
||||
# )
|
||||
|
||||
def _single_run(self, seed) -> numpy.ndarray:
|
||||
rng = numpy.random.default_rng(seed)
|
||||
@@ -93,18 +108,20 @@ class DirectMonteCarloRun:
|
||||
)
|
||||
|
||||
current_sample = sample_dipoles
|
||||
for di, low, high in zip(self.dot_inputs_array, self.lows, self.highs):
|
||||
|
||||
if len(current_sample) < 1:
|
||||
break
|
||||
vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(
|
||||
numpy.array([di]), current_sample
|
||||
)
|
||||
return self.filter.filter_samples(current_sample)
|
||||
# for di, low, high in zip(self.dot_inputs_array, self.lows, self.highs):
|
||||
|
||||
current_sample = current_sample[
|
||||
numpy.all((vals > low) & (vals < high), axis=1)
|
||||
]
|
||||
return current_sample
|
||||
# if len(current_sample) < 1:
|
||||
# break
|
||||
# vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(
|
||||
# numpy.array([di]), current_sample
|
||||
# )
|
||||
|
||||
# current_sample = current_sample[
|
||||
# numpy.all((vals > low) & (vals < high), axis=1)
|
||||
# ]
|
||||
# return current_sample
|
||||
|
||||
def execute(self) -> DirectMonteCarloResult:
|
||||
step_count = 0
|
||||
|
Reference in New Issue
Block a user