feat: Adds dynamic cycle count increases to help reach minimum success count
Some checks failed
gitea-physics/deepdog/pipeline/pr-master There was a failure building this commit
Some checks failed
gitea-physics/deepdog/pipeline/pr-master There was a failure building this commit
This commit is contained in:
parent
31e6cfaf51
commit
ec7b4cac39
@ -57,7 +57,7 @@ class AltBayesRun():
|
||||
run_count: int
|
||||
The number of runs to do.
|
||||
'''
|
||||
def __init__(self, dot_positions: Sequence[numpy.typing.ArrayLike], frequency_range: Sequence[float], discretisations_with_names: Sequence[Tuple[str, pdme.model.Discretisation]], actual_model: pdme.model.Model, filename_slug: str, run_count: int = 100, low_error: float = 0.9, high_error: float = 1.1, pairs_high_error=None, pairs_low_error=None, monte_carlo_count: int = 10000, monte_carlo_cycles: int = 10, max_frequency: float = 20, end_threshold: float = None, chunksize: int = CHUNKSIZE, use_pairs: bool = False) -> None:
|
||||
def __init__(self, dot_positions: Sequence[numpy.typing.ArrayLike], frequency_range: Sequence[float], discretisations_with_names: Sequence[Tuple[str, pdme.model.Discretisation]], actual_model: pdme.model.Model, filename_slug: str, run_count: int = 100, low_error: float = 0.9, high_error: float = 1.1, pairs_high_error=None, pairs_low_error=None, monte_carlo_count: int = 10000, monte_carlo_cycles: int = 10, target_success: int = 100, max_monte_carlo_cycles_steps: int = 10, max_frequency: float = 20, end_threshold: float = None, chunksize: int = CHUNKSIZE, use_pairs: bool = False) -> None:
|
||||
self.dot_inputs = pdme.inputs.inputs_with_frequency_range(dot_positions, frequency_range)
|
||||
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(self.dot_inputs)
|
||||
|
||||
@ -72,6 +72,8 @@ class AltBayesRun():
|
||||
self.model_count = len(self.discretisations)
|
||||
self.monte_carlo_count = monte_carlo_count
|
||||
self.monte_carlo_cycles = monte_carlo_cycles
|
||||
self.target_success = target_success
|
||||
self.max_monte_carlo_cycles_steps = max_monte_carlo_cycles_steps
|
||||
self.run_count = run_count
|
||||
self.low_error = low_error
|
||||
self.high_error = high_error
|
||||
@ -134,14 +136,25 @@ class AltBayesRun():
|
||||
for disc_count, discretisation in enumerate(self.discretisations):
|
||||
_logger.debug(f"Doing discretisation #{disc_count}")
|
||||
with multiprocessing.Pool(multiprocessing.cpu_count() - 1 or 1) as pool:
|
||||
if self.use_pairs:
|
||||
results.append(sum(
|
||||
pool.imap_unordered(get_a_result_using_pairs, [(discretisation, self.dot_inputs_array, self.dot_pair_inputs_array, lows, highs, pair_lows, pair_highs, self.monte_carlo_count, self.max_frequency)] * self.monte_carlo_cycles, self.chunksize)
|
||||
))
|
||||
else:
|
||||
results.append(sum(
|
||||
pool.imap_unordered(get_a_result, [(discretisation, self.dot_inputs_array, lows, highs, self.monte_carlo_count, self.max_frequency)] * self.monte_carlo_cycles, self.chunksize)
|
||||
))
|
||||
cycle_count = 0
|
||||
cycle_success = 0
|
||||
cycles = 0
|
||||
while (cycles < self.max_monte_carlo_cycles_steps) and (cycle_success <= self.target_success):
|
||||
_logger.debug(f"Starting cycle {cycles}")
|
||||
cycles += 1
|
||||
current_success = 0
|
||||
cycle_count += self.monte_carlo_count * self.monte_carlo_cycles
|
||||
if self.use_pairs:
|
||||
current_success = sum(
|
||||
pool.imap_unordered(get_a_result_using_pairs, [(discretisation, self.dot_inputs_array, self.dot_pair_inputs_array, lows, highs, pair_lows, pair_highs, self.monte_carlo_count, self.max_frequency)] * self.monte_carlo_cycles, self.chunksize)
|
||||
)
|
||||
else:
|
||||
current_success = sum(
|
||||
pool.imap_unordered(get_a_result, [(discretisation, self.dot_inputs_array, lows, highs, self.monte_carlo_count, self.max_frequency)] * self.monte_carlo_cycles, self.chunksize)
|
||||
)
|
||||
|
||||
cycle_success += current_success
|
||||
results.append((cycle_count, cycle_success))
|
||||
|
||||
_logger.debug("Done, constructing output now")
|
||||
row = {
|
||||
@ -151,12 +164,12 @@ class AltBayesRun():
|
||||
}
|
||||
successes: List[float] = []
|
||||
counts: List[int] = []
|
||||
for model_index, (name, result) in enumerate(zip(self.model_names, results)):
|
||||
for model_index, (name, (count, result)) in enumerate(zip(self.model_names, results)):
|
||||
|
||||
row[f"{name}_success"] = result
|
||||
row[f"{name}_count"] = self.monte_carlo_count * self.monte_carlo_cycles
|
||||
row[f"{name}_count"] = count
|
||||
successes.append(max(result, 0.5))
|
||||
counts.append(self.monte_carlo_count * self.monte_carlo_cycles)
|
||||
counts.append(count)
|
||||
|
||||
success_weight = sum([(succ / count) * prob for succ, count, prob in zip(successes, counts, self.probabilities)])
|
||||
new_probabilities = [(succ / count) * old_prob / success_weight for succ, count, old_prob in zip(successes, counts, self.probabilities)]
|
||||
|
Loading…
x
Reference in New Issue
Block a user