Compare commits
68 Commits
Author | SHA1 | Date | |
---|---|---|---|
f7559b2c4f
|
|||
9a7a3ff2c7
|
|||
c4805806be
|
|||
161bcf42ad
|
|||
8e6ead416c
|
|||
e6defc7948
|
|||
33d5da6a4f
|
|||
1110372a55
|
|||
e6a00d6b8f
|
|||
57cd746e5c
|
|||
878e16286b
|
|||
4726ccfb8c
|
|||
598dad1e6d
|
|||
01c0d7e49b
|
|||
a170a3ce01
|
|||
9bb8fc50fe
|
|||
f775ed34c6
|
|||
7d0c2b22cc | |||
d6e6876a79
|
|||
fccf50eb27
|
|||
33cab9ab41
|
|||
ad521ba472
|
|||
266d6dd583
|
|||
c573f8806d | |||
a015daf5ff
|
|||
a089951bbe
|
|||
7568aef842
|
|||
c4b6cbbb6f | |||
1cf4454153
|
|||
bf15f4a7b7
|
|||
12903b2540
|
|||
959b9af378
|
|||
8fd1b75e13
|
|||
17ae84879d
|
|||
fc2880ba2f
|
|||
589c16f25c
|
|||
743c3e22ae
|
|||
b3e2acd79c
|
|||
de1ec3e700
|
|||
f4964a19ea
|
|||
08d73c73e9 | |||
7ea1d715f6
|
|||
ed102799d1 | |||
0b8d14ef48 | |||
a5d0d257d7 | |||
6ee995e561 | |||
a217ad2c75
|
|||
039f68ee97
|
|||
e9dd21f69b
|
|||
8303fc7860 | |||
2418e3a263 | |||
73465203b2 | |||
01ba4af229 | |||
2c5c122820
|
|||
0a1a27759b
|
|||
558a4df643 | |||
6f141af0fe | |||
2c99fcf687
|
|||
ad0ace4da3
|
|||
3f1265e3ec
|
|||
969f01e9c5
|
|||
b282ffa800 | |||
91e9e5198e | |||
d7e0f13ca5
|
|||
74de2b0433
|
|||
c036028902
|
|||
690ad9e288 | |||
bd56f24774
|
2
.flake8
2
.flake8
@@ -1,3 +1,3 @@
|
|||||||
[flake8]
|
[flake8]
|
||||||
ignore = W191, E501, W503
|
ignore = W191, E501, W503, E203
|
||||||
max-line-length = 120
|
max-line-length = 120
|
||||||
|
4
.gitignore
vendored
4
.gitignore
vendored
@@ -114,6 +114,10 @@ ENV/
|
|||||||
env.bak/
|
env.bak/
|
||||||
venv.bak/
|
venv.bak/
|
||||||
|
|
||||||
|
# direnv
|
||||||
|
.envrc
|
||||||
|
.direnv
|
||||||
|
|
||||||
# Spyder project settings
|
# Spyder project settings
|
||||||
.spyderproject
|
.spyderproject
|
||||||
.spyproject
|
.spyproject
|
||||||
|
108
CHANGELOG.md
108
CHANGELOG.md
@@ -2,6 +2,114 @@
|
|||||||
|
|
||||||
All notable changes to this project will be documented in this file. See [standard-version](https://github.com/conventional-changelog/standard-version) for commit guidelines.
|
All notable changes to this project will be documented in this file. See [standard-version](https://github.com/conventional-changelog/standard-version) for commit guidelines.
|
||||||
|
|
||||||
|
### [0.7.4](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.3...0.7.4) (2023-07-27)
|
||||||
|
|
||||||
|
|
||||||
|
### Features
|
||||||
|
|
||||||
|
* adds configurable chunk size for the initial mc level 0 SS stage cost calculation to reduce memory usage ([9a7a3ff](https://gitea.deepak.science:2222/physics/deepdog/commit/9a7a3ff2c7ebe81d5e10647ce39844c372ff7b07))
|
||||||
|
* allows for deepdog bayesrun with ss to not print csv to make snapshot testing possible ([8e6ead4](https://gitea.deepak.science:2222/physics/deepdog/commit/8e6ead416c9eba56f568f648d0df44caaa510cfe))
|
||||||
|
|
||||||
|
|
||||||
|
### Bug Fixes
|
||||||
|
|
||||||
|
* fixes bug if case of clamping necessary ([161bcf4](https://gitea.deepak.science:2222/physics/deepdog/commit/161bcf42addf331661c3929073688b9f2c13502c))
|
||||||
|
* fixes bug with clamped probabilities being underestimated ([e6defc7](https://gitea.deepak.science:2222/physics/deepdog/commit/e6defc794871a48ac331023eb477bd235b78d6d0))
|
||||||
|
|
||||||
|
### [0.7.3](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.2...0.7.3) (2023-07-27)
|
||||||
|
|
||||||
|
|
||||||
|
### Features
|
||||||
|
|
||||||
|
* adds utility options and avoids memory leak ([598dad1](https://gitea.deepak.science:2222/physics/deepdog/commit/598dad1e6dc8fc0b7a5b4a90c8e17bf744e8d98c))
|
||||||
|
|
||||||
|
### [0.7.2](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.1...0.7.2) (2023-07-24)
|
||||||
|
|
||||||
|
|
||||||
|
### Features
|
||||||
|
|
||||||
|
* clamps results now ([9bb8fc5](https://gitea.deepak.science:2222/physics/deepdog/commit/9bb8fc50fe1bd1a285a333c5a396bfb6ac3176cf))
|
||||||
|
|
||||||
|
|
||||||
|
### Bug Fixes
|
||||||
|
|
||||||
|
* fixes clamping format etc. ([a170a3c](https://gitea.deepak.science:2222/physics/deepdog/commit/a170a3ce01adcec356e5aaab9abcc0ec4accd64b))
|
||||||
|
|
||||||
|
### [0.7.1](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.0...0.7.1) (2023-07-24)
|
||||||
|
|
||||||
|
|
||||||
|
### Features
|
||||||
|
|
||||||
|
* adds subset simulation stuff ([33cab9a](https://gitea.deepak.science:2222/physics/deepdog/commit/33cab9ab4179cec13ae9e591a8ffc32df4dda989))
|
||||||
|
|
||||||
|
## [0.7.0](https://gitea.deepak.science:2222/physics/deepdog/compare/0.6.7...0.7.0) (2023-05-01)
|
||||||
|
|
||||||
|
|
||||||
|
### ⚠ BREAKING CHANGES
|
||||||
|
|
||||||
|
* removes fastfilter parameter because it should never be needed
|
||||||
|
|
||||||
|
### Features
|
||||||
|
|
||||||
|
* adds pair capability to real spectrum run hopefully ([a089951](https://gitea.deepak.science:2222/physics/deepdog/commit/a089951bbefcd8a0b2efeb49b7a8090412cbb23d))
|
||||||
|
* removes fastfilter parameter because it should never be needed ([a015daf](https://gitea.deepak.science:2222/physics/deepdog/commit/a015daf5ff6fa5f6155c8d7e02981b588840a5b0))
|
||||||
|
|
||||||
|
### [0.6.7](https://gitea.deepak.science:2222/physics/deepdog/compare/0.6.6...0.6.7) (2023-04-14)
|
||||||
|
|
||||||
|
|
||||||
|
### Features
|
||||||
|
|
||||||
|
* adds option to cap core count for real spectrum run ([bf15f4a](https://gitea.deepak.science:2222/physics/deepdog/commit/bf15f4a7b7f59504983624e7d512ed7474372032))
|
||||||
|
* adds option to cap core count for temp aware run ([12903b2](https://gitea.deepak.science:2222/physics/deepdog/commit/12903b2540cefb040174d230bc0d04719a6dc1b7))
|
||||||
|
|
||||||
|
|
||||||
|
### Bug Fixes
|
||||||
|
|
||||||
|
* avoids redefinition of core count in loop ([1cf4454](https://gitea.deepak.science:2222/physics/deepdog/commit/1cf44541531541088198bd4599d467df3e1acbcf))
|
||||||
|
|
||||||
|
### [0.6.6](https://gitea.deepak.science:2222/physics/deepdog/compare/0.6.5...0.6.6) (2023-04-09)
|
||||||
|
|
||||||
|
|
||||||
|
### Bug Fixes
|
||||||
|
|
||||||
|
* removes bad logging in multiprocessing function ([8fd1b75](https://gitea.deepak.science:2222/physics/deepdog/commit/8fd1b75e1378301210bfa8f14dd09174bbd21414))
|
||||||
|
|
||||||
|
### [0.6.5](https://gitea.deepak.science:2222/physics/deepdog/compare/0.6.4...0.6.5) (2023-04-09)
|
||||||
|
|
||||||
|
|
||||||
|
### Features
|
||||||
|
|
||||||
|
* adds temp aware guy using new pdme temp-flexible feature for bundling temp models ([de1ec3e](https://gitea.deepak.science:2222/physics/deepdog/commit/de1ec3e70062d418e0d4c89716905cc9313d2e26))
|
||||||
|
|
||||||
|
### [0.6.4](https://gitea.deepak.science:2222/physics/deepdog/compare/0.6.3...0.6.4) (2022-08-13)
|
||||||
|
|
||||||
|
|
||||||
|
### Features
|
||||||
|
|
||||||
|
* Prints model names while running ([7ea1d71](https://gitea.deepak.science:2222/physics/deepdog/commit/7ea1d715f67e81c9fa841c5a62f1cc700ff7363d))
|
||||||
|
|
||||||
|
### [0.6.3](https://gitea.deepak.science:2222/physics/deepdog/compare/0.6.2...0.6.3) (2022-06-12)
|
||||||
|
|
||||||
|
|
||||||
|
### Features
|
||||||
|
|
||||||
|
* adds fast filter variant ([2c5c122](https://gitea.deepak.science:2222/physics/deepdog/commit/2c5c1228209e51d17253f07470e2f1e6dc6872d7))
|
||||||
|
* adds tester for fast filter real spectrum ([0a1a277](https://gitea.deepak.science:2222/physics/deepdog/commit/0a1a27759b0d4ab01da214b76ab14bf2b1fe00e3))
|
||||||
|
|
||||||
|
### [0.6.2](https://gitea.deepak.science:2222/physics/deepdog/compare/0.6.1...0.6.2) (2022-05-26)
|
||||||
|
|
||||||
|
|
||||||
|
### Features
|
||||||
|
|
||||||
|
* adds better import api for real data run ([d7e0f13](https://gitea.deepak.science:2222/physics/deepdog/commit/d7e0f13ca55197b24cb534c80f321ee76b9c4a40))
|
||||||
|
|
||||||
|
### [0.6.1](https://gitea.deepak.science:2222/physics/deepdog/compare/0.6.0...0.6.1) (2022-05-22)
|
||||||
|
|
||||||
|
|
||||||
|
### Features
|
||||||
|
|
||||||
|
* adds new runner for real spectra ([bd56f24](https://gitea.deepak.science:2222/physics/deepdog/commit/bd56f247748babb2ee1f2a1182d25aa968bff5a5))
|
||||||
|
|
||||||
## [0.6.0](https://gitea.deepak.science:2222/physics/deepdog/compare/0.5.0...0.6.0) (2022-05-22)
|
## [0.6.0](https://gitea.deepak.science:2222/physics/deepdog/compare/0.5.0...0.6.0) (2022-05-22)
|
||||||
|
|
||||||
|
|
||||||
|
20
Jenkinsfile
vendored
20
Jenkinsfile
vendored
@@ -4,7 +4,7 @@ pipeline {
|
|||||||
label 'deepdog' // all your pods will be named with this prefix, followed by a unique id
|
label 'deepdog' // all your pods will be named with this prefix, followed by a unique id
|
||||||
idleMinutes 5 // how long the pod will live after no jobs have run on it
|
idleMinutes 5 // how long the pod will live after no jobs have run on it
|
||||||
yamlFile 'jenkins/ci-agent-pod.yaml' // path to the pod definition relative to the root of our project
|
yamlFile 'jenkins/ci-agent-pod.yaml' // path to the pod definition relative to the root of our project
|
||||||
defaultContainer 'python' // define a default container if more than a few stages use it, will default to jnlp container
|
defaultContainer 'poetry' // define a default container if more than a few stages use it, will default to jnlp container
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -12,36 +12,30 @@ pipeline {
|
|||||||
parallelsAlwaysFailFast()
|
parallelsAlwaysFailFast()
|
||||||
}
|
}
|
||||||
|
|
||||||
environment {
|
|
||||||
POETRY_HOME="/opt/poetry"
|
|
||||||
POETRY_VERSION="1.1.12"
|
|
||||||
}
|
|
||||||
|
|
||||||
stages {
|
stages {
|
||||||
stage('Build') {
|
stage('Build') {
|
||||||
steps {
|
steps {
|
||||||
echo 'Building...'
|
echo 'Building...'
|
||||||
sh 'python --version'
|
sh 'python --version'
|
||||||
sh 'curl -sSL https://raw.githubusercontent.com/python-poetry/poetry/master/get-poetry.py | python'
|
sh 'poetry --version'
|
||||||
sh '${POETRY_HOME}/bin/poetry --version'
|
sh 'poetry install'
|
||||||
sh '${POETRY_HOME}/bin/poetry install'
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
stage('Test') {
|
stage('Test') {
|
||||||
parallel{
|
parallel{
|
||||||
stage('pytest') {
|
stage('pytest') {
|
||||||
steps {
|
steps {
|
||||||
sh '${POETRY_HOME}/bin/poetry run pytest'
|
sh 'poetry run pytest'
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
stage('lint') {
|
stage('lint') {
|
||||||
steps {
|
steps {
|
||||||
sh '${POETRY_HOME}/bin/poetry run flake8 deepdog tests'
|
sh 'poetry run flake8 deepdog tests'
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
stage('mypy') {
|
stage('mypy') {
|
||||||
steps {
|
steps {
|
||||||
sh '${POETRY_HOME}/bin/poetry run mypy deepdog'
|
sh 'poetry run mypy deepdog'
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -57,7 +51,7 @@ pipeline {
|
|||||||
}
|
}
|
||||||
steps {
|
steps {
|
||||||
echo 'Deploying...'
|
echo 'Deploying...'
|
||||||
sh '${POETRY_HOME}/bin/poetry publish -u ${PYPI_USR} -p ${PYPI_PSW} --build'
|
sh 'poetry publish -u ${PYPI_USR} -p ${PYPI_PSW} --build'
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@@ -5,7 +5,7 @@
|
|||||||
[](https://jenkins.deepak.science/job/gitea-physics/job/deepdog/job/master/)
|
[](https://jenkins.deepak.science/job/gitea-physics/job/deepdog/job/master/)
|
||||||

|

|
||||||

|

|
||||||

|

|
||||||
|
|
||||||
The DiPole DiaGnostic tool.
|
The DiPole DiaGnostic tool.
|
||||||
|
|
||||||
|
@@ -2,6 +2,9 @@ import logging
|
|||||||
from deepdog.meta import __version__
|
from deepdog.meta import __version__
|
||||||
from deepdog.bayes_run import BayesRun
|
from deepdog.bayes_run import BayesRun
|
||||||
from deepdog.bayes_run_simulpairs import BayesRunSimulPairs
|
from deepdog.bayes_run_simulpairs import BayesRunSimulPairs
|
||||||
|
from deepdog.real_spectrum_run import RealSpectrumRun
|
||||||
|
from deepdog.temp_aware_real_spectrum_run import TempAwareRealSpectrumRun
|
||||||
|
from deepdog.bayes_run_with_ss import BayesRunWithSubspaceSimulation
|
||||||
|
|
||||||
|
|
||||||
def get_version():
|
def get_version():
|
||||||
@@ -12,6 +15,9 @@ __all__ = [
|
|||||||
"get_version",
|
"get_version",
|
||||||
"BayesRun",
|
"BayesRun",
|
||||||
"BayesRunSimulPairs",
|
"BayesRunSimulPairs",
|
||||||
|
"RealSpectrumRun",
|
||||||
|
"TempAwareRealSpectrumRun",
|
||||||
|
"BayesRunWithSubspaceSimulation",
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
|
257
deepdog/bayes_run_with_ss.py
Normal file
257
deepdog/bayes_run_with_ss.py
Normal file
@@ -0,0 +1,257 @@
|
|||||||
|
import deepdog.subset_simulation
|
||||||
|
import pdme.inputs
|
||||||
|
import pdme.model
|
||||||
|
import pdme.measurement.input_types
|
||||||
|
import pdme.measurement.oscillating_dipole
|
||||||
|
import pdme.util.fast_v_calc
|
||||||
|
import pdme.util.fast_nonlocal_spectrum
|
||||||
|
from typing import Sequence, Tuple, List, Optional
|
||||||
|
import datetime
|
||||||
|
import csv
|
||||||
|
import logging
|
||||||
|
import numpy
|
||||||
|
import numpy.typing
|
||||||
|
|
||||||
|
|
||||||
|
# TODO: remove hardcode
|
||||||
|
CHUNKSIZE = 50
|
||||||
|
|
||||||
|
# TODO: It's garbage to have this here duplicated from pdme.
|
||||||
|
DotInput = Tuple[numpy.typing.ArrayLike, float]
|
||||||
|
|
||||||
|
|
||||||
|
CLAMPING_FACTOR = 10
|
||||||
|
|
||||||
|
_logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class BayesRunWithSubspaceSimulation:
|
||||||
|
"""
|
||||||
|
A single Bayes run for a given set of dots.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
dot_inputs : Sequence[DotInput]
|
||||||
|
The dot inputs for this bayes run.
|
||||||
|
|
||||||
|
models_with_names : Sequence[Tuple(str, pdme.model.DipoleModel)]
|
||||||
|
The models to evaluate.
|
||||||
|
|
||||||
|
actual_model : pdme.model.DipoleModel
|
||||||
|
The model which is actually correct.
|
||||||
|
|
||||||
|
filename_slug : str
|
||||||
|
The filename slug to include.
|
||||||
|
|
||||||
|
run_count: int
|
||||||
|
The number of runs to do.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
dot_positions: Sequence[numpy.typing.ArrayLike],
|
||||||
|
frequency_range: Sequence[float],
|
||||||
|
models_with_names: Sequence[Tuple[str, pdme.model.DipoleModel]],
|
||||||
|
actual_model: pdme.model.DipoleModel,
|
||||||
|
filename_slug: str,
|
||||||
|
max_frequency: float = 20,
|
||||||
|
end_threshold: float = None,
|
||||||
|
run_count=100,
|
||||||
|
chunksize: int = CHUNKSIZE,
|
||||||
|
ss_n_c: int = 500,
|
||||||
|
ss_n_s: int = 100,
|
||||||
|
ss_m_max: int = 15,
|
||||||
|
ss_target_cost: Optional[float] = None,
|
||||||
|
ss_level_0_seed: int = 200,
|
||||||
|
ss_mcmc_seed: int = 20,
|
||||||
|
ss_use_adaptive_steps=True,
|
||||||
|
ss_default_phi_step=0.01,
|
||||||
|
ss_default_theta_step=0.01,
|
||||||
|
ss_default_r_step=0.01,
|
||||||
|
ss_default_w_log_step=0.01,
|
||||||
|
ss_default_upper_w_log_step=4,
|
||||||
|
ss_dump_last_generation=False,
|
||||||
|
ss_initial_costs_chunk_size=100,
|
||||||
|
write_output_to_bayesruncsv=True,
|
||||||
|
) -> None:
|
||||||
|
self.dot_inputs = pdme.inputs.inputs_with_frequency_range(
|
||||||
|
dot_positions, frequency_range
|
||||||
|
)
|
||||||
|
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
|
||||||
|
self.dot_inputs
|
||||||
|
)
|
||||||
|
|
||||||
|
self.models_with_names = models_with_names
|
||||||
|
self.models = [model for (_, model) in models_with_names]
|
||||||
|
self.model_names = [name for (name, _) in models_with_names]
|
||||||
|
self.actual_model = actual_model
|
||||||
|
|
||||||
|
self.n: int
|
||||||
|
try:
|
||||||
|
self.n = self.actual_model.n # type: ignore
|
||||||
|
except AttributeError:
|
||||||
|
self.n = 1
|
||||||
|
|
||||||
|
self.model_count = len(self.models)
|
||||||
|
|
||||||
|
self.csv_fields = []
|
||||||
|
for i in range(self.n):
|
||||||
|
self.csv_fields.extend(
|
||||||
|
[
|
||||||
|
f"dipole_moment_{i+1}",
|
||||||
|
f"dipole_location_{i+1}",
|
||||||
|
f"dipole_frequency_{i+1}",
|
||||||
|
]
|
||||||
|
)
|
||||||
|
self.compensate_zeros = True
|
||||||
|
self.chunksize = chunksize
|
||||||
|
for name in self.model_names:
|
||||||
|
self.csv_fields.extend([f"{name}_likelihood", f"{name}_prob"])
|
||||||
|
|
||||||
|
self.probabilities = [1 / self.model_count] * self.model_count
|
||||||
|
|
||||||
|
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
||||||
|
self.filename = f"{timestamp}-{filename_slug}.bayesrunwithss.csv"
|
||||||
|
self.max_frequency = max_frequency
|
||||||
|
|
||||||
|
if end_threshold is not None:
|
||||||
|
if 0 < end_threshold < 1:
|
||||||
|
self.end_threshold: float = end_threshold
|
||||||
|
self.use_end_threshold = True
|
||||||
|
_logger.info(f"Will abort early, at {self.end_threshold}.")
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
f"end_threshold should be between 0 and 1, but is actually {end_threshold}"
|
||||||
|
)
|
||||||
|
|
||||||
|
self.ss_n_c = ss_n_c
|
||||||
|
self.ss_n_s = ss_n_s
|
||||||
|
self.ss_m_max = ss_m_max
|
||||||
|
self.ss_target_cost = ss_target_cost
|
||||||
|
self.ss_level_0_seed = ss_level_0_seed
|
||||||
|
self.ss_mcmc_seed = ss_mcmc_seed
|
||||||
|
self.ss_use_adaptive_steps = ss_use_adaptive_steps
|
||||||
|
self.ss_default_phi_step = ss_default_phi_step
|
||||||
|
self.ss_default_theta_step = ss_default_theta_step
|
||||||
|
self.ss_default_r_step = ss_default_r_step
|
||||||
|
self.ss_default_w_log_step = ss_default_w_log_step
|
||||||
|
self.ss_default_upper_w_log_step = ss_default_upper_w_log_step
|
||||||
|
self.ss_dump_last_generation = ss_dump_last_generation
|
||||||
|
self.ss_initial_costs_chunk_size = ss_initial_costs_chunk_size
|
||||||
|
self.run_count = run_count
|
||||||
|
|
||||||
|
self.write_output_to_csv = write_output_to_bayesruncsv
|
||||||
|
|
||||||
|
def go(self) -> Sequence:
|
||||||
|
|
||||||
|
if self.write_output_to_csv:
|
||||||
|
with open(self.filename, "a", newline="") as outfile:
|
||||||
|
writer = csv.DictWriter(
|
||||||
|
outfile, fieldnames=self.csv_fields, dialect="unix"
|
||||||
|
)
|
||||||
|
writer.writeheader()
|
||||||
|
|
||||||
|
return_result = []
|
||||||
|
|
||||||
|
for run in range(1, self.run_count + 1):
|
||||||
|
|
||||||
|
# Generate the actual dipoles
|
||||||
|
actual_dipoles = self.actual_model.get_dipoles(self.max_frequency)
|
||||||
|
|
||||||
|
measurements = actual_dipoles.get_dot_measurements(self.dot_inputs)
|
||||||
|
|
||||||
|
_logger.info(f"Going to work on dipole at {actual_dipoles.dipoles}")
|
||||||
|
|
||||||
|
# define a new seed sequence for each run
|
||||||
|
|
||||||
|
results = []
|
||||||
|
_logger.debug("Going to iterate over models now")
|
||||||
|
for model_count, model in enumerate(self.models_with_names):
|
||||||
|
_logger.debug(f"Doing model #{model_count}, {model[0]}")
|
||||||
|
subset_run = deepdog.subset_simulation.SubsetSimulation(
|
||||||
|
model,
|
||||||
|
self.dot_inputs,
|
||||||
|
measurements,
|
||||||
|
self.ss_n_c,
|
||||||
|
self.ss_n_s,
|
||||||
|
self.ss_m_max,
|
||||||
|
self.ss_target_cost,
|
||||||
|
self.ss_level_0_seed,
|
||||||
|
self.ss_mcmc_seed,
|
||||||
|
self.ss_use_adaptive_steps,
|
||||||
|
self.ss_default_phi_step,
|
||||||
|
self.ss_default_theta_step,
|
||||||
|
self.ss_default_r_step,
|
||||||
|
self.ss_default_w_log_step,
|
||||||
|
self.ss_default_upper_w_log_step,
|
||||||
|
initial_cost_chunk_size=self.ss_initial_costs_chunk_size,
|
||||||
|
keep_probs_list=False,
|
||||||
|
dump_last_generation_to_file=self.ss_dump_last_generation,
|
||||||
|
)
|
||||||
|
results.append(subset_run.execute())
|
||||||
|
|
||||||
|
_logger.debug("Done, constructing output now")
|
||||||
|
row = {
|
||||||
|
"dipole_moment_1": actual_dipoles.dipoles[0].p,
|
||||||
|
"dipole_location_1": actual_dipoles.dipoles[0].s,
|
||||||
|
"dipole_frequency_1": actual_dipoles.dipoles[0].w,
|
||||||
|
}
|
||||||
|
for i in range(1, self.n):
|
||||||
|
try:
|
||||||
|
current_dipoles = actual_dipoles.dipoles[i]
|
||||||
|
row[f"dipole_moment_{i+1}"] = current_dipoles.p
|
||||||
|
row[f"dipole_location_{i+1}"] = current_dipoles.s
|
||||||
|
row[f"dipole_frequency_{i+1}"] = current_dipoles.w
|
||||||
|
except IndexError:
|
||||||
|
_logger.info(f"Not writing anymore, saw end after {i}")
|
||||||
|
break
|
||||||
|
|
||||||
|
likelihoods: List[float] = []
|
||||||
|
|
||||||
|
for (name, result) in zip(self.model_names, results):
|
||||||
|
if result.over_target_likelihood is None:
|
||||||
|
if result.lowest_likelihood is None:
|
||||||
|
_logger.error(f"result {result} looks bad")
|
||||||
|
clamped_likelihood = 10**-15
|
||||||
|
else:
|
||||||
|
clamped_likelihood = result.lowest_likelihood / CLAMPING_FACTOR
|
||||||
|
_logger.warning(
|
||||||
|
f"got a none result, clamping to {clamped_likelihood}"
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
clamped_likelihood = result.over_target_likelihood
|
||||||
|
likelihoods.append(clamped_likelihood)
|
||||||
|
row[f"{name}_likelihood"] = clamped_likelihood
|
||||||
|
|
||||||
|
success_weight = sum(
|
||||||
|
[
|
||||||
|
likelihood * prob
|
||||||
|
for likelihood, prob in zip(likelihoods, self.probabilities)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
new_probabilities = [
|
||||||
|
likelihood * old_prob / success_weight
|
||||||
|
for likelihood, old_prob in zip(likelihoods, self.probabilities)
|
||||||
|
]
|
||||||
|
self.probabilities = new_probabilities
|
||||||
|
for name, probability in zip(self.model_names, self.probabilities):
|
||||||
|
row[f"{name}_prob"] = probability
|
||||||
|
_logger.info(row)
|
||||||
|
return_result.append(row)
|
||||||
|
|
||||||
|
if self.write_output_to_csv:
|
||||||
|
with open(self.filename, "a", newline="") as outfile:
|
||||||
|
writer = csv.DictWriter(
|
||||||
|
outfile, fieldnames=self.csv_fields, dialect="unix"
|
||||||
|
)
|
||||||
|
writer.writerow(row)
|
||||||
|
|
||||||
|
if self.use_end_threshold:
|
||||||
|
max_prob = max(self.probabilities)
|
||||||
|
if max_prob > self.end_threshold:
|
||||||
|
_logger.info(
|
||||||
|
f"Aborting early, because {max_prob} is greater than {self.end_threshold}"
|
||||||
|
)
|
||||||
|
break
|
||||||
|
|
||||||
|
return return_result
|
307
deepdog/real_spectrum_run.py
Normal file
307
deepdog/real_spectrum_run.py
Normal file
@@ -0,0 +1,307 @@
|
|||||||
|
import pdme.inputs
|
||||||
|
import pdme.model
|
||||||
|
import pdme.measurement
|
||||||
|
import pdme.measurement.input_types
|
||||||
|
import pdme.measurement.oscillating_dipole
|
||||||
|
import pdme.util.fast_v_calc
|
||||||
|
import pdme.util.fast_nonlocal_spectrum
|
||||||
|
from typing import Sequence, Tuple, List, Dict, Union, Optional
|
||||||
|
import datetime
|
||||||
|
import csv
|
||||||
|
import multiprocessing
|
||||||
|
import logging
|
||||||
|
import numpy
|
||||||
|
|
||||||
|
|
||||||
|
# TODO: remove hardcode
|
||||||
|
CHUNKSIZE = 50
|
||||||
|
|
||||||
|
|
||||||
|
_logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
def get_a_result_fast_filter_pairs(input) -> int:
|
||||||
|
(
|
||||||
|
model,
|
||||||
|
dot_inputs,
|
||||||
|
lows,
|
||||||
|
highs,
|
||||||
|
pair_inputs,
|
||||||
|
pair_lows,
|
||||||
|
pair_highs,
|
||||||
|
monte_carlo_count,
|
||||||
|
seed,
|
||||||
|
) = input
|
||||||
|
|
||||||
|
rng = numpy.random.default_rng(seed)
|
||||||
|
# TODO: A long term refactor is to pull the frequency stuff out from here. The None stands for max_frequency, which is unneeded in the actually useful models.
|
||||||
|
sample_dipoles = model.get_monte_carlo_dipole_inputs(
|
||||||
|
monte_carlo_count, None, rng_to_use=rng
|
||||||
|
)
|
||||||
|
|
||||||
|
current_sample = sample_dipoles
|
||||||
|
for di, low, high in zip(dot_inputs, lows, highs):
|
||||||
|
|
||||||
|
if len(current_sample) < 1:
|
||||||
|
break
|
||||||
|
vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(
|
||||||
|
numpy.array([di]), current_sample
|
||||||
|
)
|
||||||
|
|
||||||
|
current_sample = current_sample[numpy.all((vals > low) & (vals < high), axis=1)]
|
||||||
|
|
||||||
|
for pi, plow, phigh in zip(pair_inputs, pair_lows, pair_highs):
|
||||||
|
if len(current_sample) < 1:
|
||||||
|
break
|
||||||
|
vals = pdme.util.fast_nonlocal_spectrum.fast_s_nonlocal_dipoleses(
|
||||||
|
numpy.array([pi]), current_sample
|
||||||
|
)
|
||||||
|
|
||||||
|
current_sample = current_sample[
|
||||||
|
numpy.all(
|
||||||
|
((vals > plow) & (vals < phigh)) | ((vals < plow) & (vals > phigh)),
|
||||||
|
axis=1,
|
||||||
|
)
|
||||||
|
]
|
||||||
|
return len(current_sample)
|
||||||
|
|
||||||
|
|
||||||
|
def get_a_result_fast_filter(input) -> int:
|
||||||
|
model, dot_inputs, lows, highs, monte_carlo_count, seed = input
|
||||||
|
|
||||||
|
rng = numpy.random.default_rng(seed)
|
||||||
|
# TODO: A long term refactor is to pull the frequency stuff out from here. The None stands for max_frequency, which is unneeded in the actually useful models.
|
||||||
|
sample_dipoles = model.get_monte_carlo_dipole_inputs(
|
||||||
|
monte_carlo_count, None, rng_to_use=rng
|
||||||
|
)
|
||||||
|
|
||||||
|
current_sample = sample_dipoles
|
||||||
|
for di, low, high in zip(dot_inputs, lows, highs):
|
||||||
|
|
||||||
|
if len(current_sample) < 1:
|
||||||
|
break
|
||||||
|
vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(
|
||||||
|
numpy.array([di]), current_sample
|
||||||
|
)
|
||||||
|
|
||||||
|
current_sample = current_sample[numpy.all((vals > low) & (vals < high), axis=1)]
|
||||||
|
return len(current_sample)
|
||||||
|
|
||||||
|
|
||||||
|
class RealSpectrumRun:
|
||||||
|
"""
|
||||||
|
A bayes run given some real data.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
measurements : Sequence[pdme.measurement.DotRangeMeasurement]
|
||||||
|
The dot inputs for this bayes run.
|
||||||
|
|
||||||
|
models_with_names : Sequence[Tuple(str, pdme.model.DipoleModel)]
|
||||||
|
The models to evaluate.
|
||||||
|
|
||||||
|
actual_model : pdme.model.DipoleModel
|
||||||
|
The model which is actually correct.
|
||||||
|
|
||||||
|
filename_slug : str
|
||||||
|
The filename slug to include.
|
||||||
|
|
||||||
|
run_count: int
|
||||||
|
The number of runs to do.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
measurements: Sequence[pdme.measurement.DotRangeMeasurement],
|
||||||
|
models_with_names: Sequence[Tuple[str, pdme.model.DipoleModel]],
|
||||||
|
filename_slug: str,
|
||||||
|
monte_carlo_count: int = 10000,
|
||||||
|
monte_carlo_cycles: int = 10,
|
||||||
|
target_success: int = 100,
|
||||||
|
max_monte_carlo_cycles_steps: int = 10,
|
||||||
|
chunksize: int = CHUNKSIZE,
|
||||||
|
initial_seed: int = 12345,
|
||||||
|
cap_core_count: int = 0,
|
||||||
|
pair_measurements: Optional[
|
||||||
|
Sequence[pdme.measurement.DotPairRangeMeasurement]
|
||||||
|
] = None,
|
||||||
|
) -> None:
|
||||||
|
self.measurements = measurements
|
||||||
|
self.dot_inputs = [(measure.r, measure.f) for measure in self.measurements]
|
||||||
|
|
||||||
|
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
|
||||||
|
self.dot_inputs
|
||||||
|
)
|
||||||
|
|
||||||
|
if pair_measurements is not None:
|
||||||
|
self.pair_measurements = pair_measurements
|
||||||
|
self.use_pair_measurements = True
|
||||||
|
self.dot_pair_inputs = [
|
||||||
|
(measure.r1, measure.r2, measure.f)
|
||||||
|
for measure in self.pair_measurements
|
||||||
|
]
|
||||||
|
self.dot_pair_inputs_array = (
|
||||||
|
pdme.measurement.input_types.dot_pair_inputs_to_array(
|
||||||
|
self.dot_pair_inputs
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
self.use_pair_measurements = False
|
||||||
|
|
||||||
|
self.models = [model for (_, model) in models_with_names]
|
||||||
|
self.model_names = [name for (name, _) in models_with_names]
|
||||||
|
self.model_count = len(self.models)
|
||||||
|
|
||||||
|
self.monte_carlo_count = monte_carlo_count
|
||||||
|
self.monte_carlo_cycles = monte_carlo_cycles
|
||||||
|
self.target_success = target_success
|
||||||
|
self.max_monte_carlo_cycles_steps = max_monte_carlo_cycles_steps
|
||||||
|
|
||||||
|
self.csv_fields = []
|
||||||
|
|
||||||
|
self.compensate_zeros = True
|
||||||
|
self.chunksize = chunksize
|
||||||
|
for name in self.model_names:
|
||||||
|
self.csv_fields.extend([f"{name}_success", f"{name}_count", f"{name}_prob"])
|
||||||
|
|
||||||
|
# for now initialise priors as uniform.
|
||||||
|
self.probabilities = [1 / self.model_count] * self.model_count
|
||||||
|
|
||||||
|
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
||||||
|
|
||||||
|
ff_string = "fast_filter"
|
||||||
|
|
||||||
|
self.filename = f"{timestamp}-{filename_slug}.realdata.{ff_string}.bayesrun.csv"
|
||||||
|
self.initial_seed = initial_seed
|
||||||
|
|
||||||
|
self.cap_core_count = cap_core_count
|
||||||
|
|
||||||
|
def go(self) -> None:
|
||||||
|
with open(self.filename, "a", newline="") as outfile:
|
||||||
|
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
|
||||||
|
writer.writeheader()
|
||||||
|
|
||||||
|
(
|
||||||
|
lows,
|
||||||
|
highs,
|
||||||
|
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
|
||||||
|
self.measurements
|
||||||
|
)
|
||||||
|
|
||||||
|
pair_lows = None
|
||||||
|
pair_highs = None
|
||||||
|
if self.use_pair_measurements:
|
||||||
|
(
|
||||||
|
pair_lows,
|
||||||
|
pair_highs,
|
||||||
|
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
|
||||||
|
self.pair_measurements
|
||||||
|
)
|
||||||
|
|
||||||
|
# define a new seed sequence for each run
|
||||||
|
seed_sequence = numpy.random.SeedSequence(self.initial_seed)
|
||||||
|
|
||||||
|
results = []
|
||||||
|
_logger.debug("Going to iterate over models now")
|
||||||
|
core_count = multiprocessing.cpu_count() - 1 or 1
|
||||||
|
if (self.cap_core_count >= 1) and (self.cap_core_count < core_count):
|
||||||
|
core_count = self.cap_core_count
|
||||||
|
_logger.info(f"Using {core_count} cores")
|
||||||
|
for model_count, (model, model_name) in enumerate(
|
||||||
|
zip(self.models, self.model_names)
|
||||||
|
):
|
||||||
|
_logger.debug(f"Doing model #{model_count}: {model_name}")
|
||||||
|
with multiprocessing.Pool(core_count) as pool:
|
||||||
|
cycle_count = 0
|
||||||
|
cycle_success = 0
|
||||||
|
cycles = 0
|
||||||
|
while (cycles < self.max_monte_carlo_cycles_steps) and (
|
||||||
|
cycle_success <= self.target_success
|
||||||
|
):
|
||||||
|
_logger.debug(f"Starting cycle {cycles}")
|
||||||
|
cycles += 1
|
||||||
|
current_success = 0
|
||||||
|
cycle_count += self.monte_carlo_count * self.monte_carlo_cycles
|
||||||
|
|
||||||
|
# generate a seed from the sequence for each core.
|
||||||
|
# note this needs to be inside the loop for monte carlo cycle steps!
|
||||||
|
# that way we get more stuff.
|
||||||
|
seeds = seed_sequence.spawn(self.monte_carlo_cycles)
|
||||||
|
|
||||||
|
if self.use_pair_measurements:
|
||||||
|
current_success = sum(
|
||||||
|
pool.imap_unordered(
|
||||||
|
get_a_result_fast_filter_pairs,
|
||||||
|
[
|
||||||
|
(
|
||||||
|
model,
|
||||||
|
self.dot_inputs_array,
|
||||||
|
lows,
|
||||||
|
highs,
|
||||||
|
self.dot_pair_inputs_array,
|
||||||
|
pair_lows,
|
||||||
|
pair_highs,
|
||||||
|
self.monte_carlo_count,
|
||||||
|
seed,
|
||||||
|
)
|
||||||
|
for seed in seeds
|
||||||
|
],
|
||||||
|
self.chunksize,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
|
||||||
|
current_success = sum(
|
||||||
|
pool.imap_unordered(
|
||||||
|
get_a_result_fast_filter,
|
||||||
|
[
|
||||||
|
(
|
||||||
|
model,
|
||||||
|
self.dot_inputs_array,
|
||||||
|
lows,
|
||||||
|
highs,
|
||||||
|
self.monte_carlo_count,
|
||||||
|
seed,
|
||||||
|
)
|
||||||
|
for seed in seeds
|
||||||
|
],
|
||||||
|
self.chunksize,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
cycle_success += current_success
|
||||||
|
_logger.debug(f"current running successes: {cycle_success}")
|
||||||
|
results.append((cycle_count, cycle_success))
|
||||||
|
|
||||||
|
_logger.debug("Done, constructing output now")
|
||||||
|
row: Dict[str, Union[int, float, str]] = {}
|
||||||
|
|
||||||
|
successes: List[float] = []
|
||||||
|
counts: List[int] = []
|
||||||
|
for model_index, (name, (count, result)) in enumerate(
|
||||||
|
zip(self.model_names, results)
|
||||||
|
):
|
||||||
|
|
||||||
|
row[f"{name}_success"] = result
|
||||||
|
row[f"{name}_count"] = count
|
||||||
|
successes.append(max(result, 0.5))
|
||||||
|
counts.append(count)
|
||||||
|
|
||||||
|
success_weight = sum(
|
||||||
|
[
|
||||||
|
(succ / count) * prob
|
||||||
|
for succ, count, prob in zip(successes, counts, self.probabilities)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
new_probabilities = [
|
||||||
|
(succ / count) * old_prob / success_weight
|
||||||
|
for succ, count, old_prob in zip(successes, counts, self.probabilities)
|
||||||
|
]
|
||||||
|
self.probabilities = new_probabilities
|
||||||
|
for name, probability in zip(self.model_names, self.probabilities):
|
||||||
|
row[f"{name}_prob"] = probability
|
||||||
|
_logger.info(row)
|
||||||
|
|
||||||
|
with open(self.filename, "a", newline="") as outfile:
|
||||||
|
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
|
||||||
|
writer.writerow(row)
|
3
deepdog/subset_simulation/__init__.py
Normal file
3
deepdog/subset_simulation/__init__.py
Normal file
@@ -0,0 +1,3 @@
|
|||||||
|
from deepdog.subset_simulation.subset_simulation_impl import SubsetSimulation
|
||||||
|
|
||||||
|
__all__ = ["SubsetSimulation"]
|
351
deepdog/subset_simulation/subset_simulation_impl.py
Normal file
351
deepdog/subset_simulation/subset_simulation_impl.py
Normal file
@@ -0,0 +1,351 @@
|
|||||||
|
import logging
|
||||||
|
import numpy
|
||||||
|
import pdme.measurement
|
||||||
|
import pdme.measurement.input_types
|
||||||
|
import pdme.subspace_simulation
|
||||||
|
from typing import Sequence, Tuple, Optional
|
||||||
|
|
||||||
|
from dataclasses import dataclass
|
||||||
|
|
||||||
|
_logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class SubsetSimulationResult:
|
||||||
|
probs_list: Sequence[Tuple]
|
||||||
|
over_target_cost: Optional[float]
|
||||||
|
over_target_likelihood: Optional[float]
|
||||||
|
under_target_cost: Optional[float]
|
||||||
|
under_target_likelihood: Optional[float]
|
||||||
|
lowest_likelihood: Optional[float]
|
||||||
|
|
||||||
|
|
||||||
|
class SubsetSimulation:
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
model_name_pair,
|
||||||
|
dot_inputs,
|
||||||
|
actual_measurements: Sequence[pdme.measurement.DotMeasurement],
|
||||||
|
n_c: int,
|
||||||
|
n_s: int,
|
||||||
|
m_max: int,
|
||||||
|
target_cost: Optional[float] = None,
|
||||||
|
level_0_seed: int = 200,
|
||||||
|
mcmc_seed: int = 20,
|
||||||
|
use_adaptive_steps=True,
|
||||||
|
default_phi_step=0.01,
|
||||||
|
default_theta_step=0.01,
|
||||||
|
default_r_step=0.01,
|
||||||
|
default_w_log_step=0.01,
|
||||||
|
default_upper_w_log_step=4,
|
||||||
|
keep_probs_list=True,
|
||||||
|
dump_last_generation_to_file=False,
|
||||||
|
initial_cost_chunk_size=100,
|
||||||
|
):
|
||||||
|
name, model = model_name_pair
|
||||||
|
self.model_name = name
|
||||||
|
self.model = model
|
||||||
|
_logger.info(f"got model {self.model_name}")
|
||||||
|
|
||||||
|
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
|
||||||
|
dot_inputs
|
||||||
|
)
|
||||||
|
# _logger.debug(f"actual measurements: {actual_measurements}")
|
||||||
|
self.actual_measurement_array = numpy.array([m.v for m in actual_measurements])
|
||||||
|
|
||||||
|
def cost_function_to_use(dipoles_to_test):
|
||||||
|
return pdme.subspace_simulation.proportional_costs_vs_actual_measurement(
|
||||||
|
self.dot_inputs_array, self.actual_measurement_array, dipoles_to_test
|
||||||
|
)
|
||||||
|
|
||||||
|
self.cost_function_to_use = cost_function_to_use
|
||||||
|
|
||||||
|
self.n_c = n_c
|
||||||
|
self.n_s = n_s
|
||||||
|
self.m_max = m_max
|
||||||
|
|
||||||
|
self.level_0_seed = level_0_seed
|
||||||
|
self.mcmc_seed = mcmc_seed
|
||||||
|
|
||||||
|
self.use_adaptive_steps = use_adaptive_steps
|
||||||
|
self.default_phi_step = default_phi_step
|
||||||
|
self.default_theta_step = default_theta_step
|
||||||
|
self.default_r_step = default_r_step
|
||||||
|
self.default_w_log_step = default_w_log_step
|
||||||
|
self.default_upper_w_log_step = default_upper_w_log_step
|
||||||
|
|
||||||
|
_logger.info("using params:")
|
||||||
|
_logger.info(f"\tn_c: {self.n_c}")
|
||||||
|
_logger.info(f"\tn_s: {self.n_s}")
|
||||||
|
_logger.info(f"\tm: {self.m_max}")
|
||||||
|
_logger.info("let's do level 0...")
|
||||||
|
|
||||||
|
self.target_cost = target_cost
|
||||||
|
_logger.info(f"will stop at target cost {target_cost}")
|
||||||
|
|
||||||
|
self.keep_probs_list = keep_probs_list
|
||||||
|
self.dump_last_generations = dump_last_generation_to_file
|
||||||
|
|
||||||
|
self.initial_cost_chunk_size = initial_cost_chunk_size
|
||||||
|
|
||||||
|
def execute(self) -> SubsetSimulationResult:
|
||||||
|
|
||||||
|
probs_list = []
|
||||||
|
|
||||||
|
sample_dipoles = self.model.get_monte_carlo_dipole_inputs(
|
||||||
|
self.n_c * self.n_s,
|
||||||
|
-1,
|
||||||
|
rng_to_use=numpy.random.default_rng(self.level_0_seed),
|
||||||
|
)
|
||||||
|
# _logger.debug(sample_dipoles)
|
||||||
|
# _logger.debug(sample_dipoles.shape)
|
||||||
|
|
||||||
|
raw_costs = []
|
||||||
|
_logger.debug(f"Using iterated cost function thing with chunk size {self.initial_cost_chunk_size}")
|
||||||
|
|
||||||
|
for x in range(0, len(sample_dipoles), self.initial_cost_chunk_size):
|
||||||
|
_logger.debug(f"doing chunk {x}")
|
||||||
|
raw_costs.extend(self.cost_function_to_use(sample_dipoles[x: x + self.initial_cost_chunk_size]))
|
||||||
|
costs = numpy.array(raw_costs)
|
||||||
|
|
||||||
|
_logger.debug(f"costs: {costs}")
|
||||||
|
sorted_indexes = costs.argsort()[::-1]
|
||||||
|
|
||||||
|
_logger.debug(costs[sorted_indexes])
|
||||||
|
_logger.debug(sample_dipoles[sorted_indexes])
|
||||||
|
|
||||||
|
sorted_costs = costs[sorted_indexes]
|
||||||
|
sorted_dipoles = sample_dipoles[sorted_indexes]
|
||||||
|
|
||||||
|
threshold_cost = sorted_costs[-self.n_c]
|
||||||
|
|
||||||
|
all_dipoles = numpy.array(
|
||||||
|
[
|
||||||
|
pdme.subspace_simulation.sort_array_of_dipoles_by_frequency(samp)
|
||||||
|
for samp in sorted_dipoles
|
||||||
|
]
|
||||||
|
)
|
||||||
|
all_chains = list(zip(sorted_costs, all_dipoles))
|
||||||
|
|
||||||
|
mcmc_rng = numpy.random.default_rng(self.mcmc_seed)
|
||||||
|
|
||||||
|
for i in range(self.m_max):
|
||||||
|
next_seeds = all_chains[-self.n_c :]
|
||||||
|
|
||||||
|
if self.dump_last_generations:
|
||||||
|
_logger.info("writing out csv file")
|
||||||
|
next_dipoles_seed_dipoles = numpy.array([n[1] for n in next_seeds])
|
||||||
|
for n in range(self.model.n):
|
||||||
|
_logger.info(f"{next_dipoles_seed_dipoles[:, n].shape}")
|
||||||
|
numpy.savetxt(
|
||||||
|
f"generation_{self.n_c}_{self.n_s}_{i}_dipole_{n}.csv",
|
||||||
|
next_dipoles_seed_dipoles[:, n],
|
||||||
|
delimiter=",",
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.keep_probs_list:
|
||||||
|
for cost_index, cost_chain in enumerate(all_chains[: -self.n_c]):
|
||||||
|
probs_list.append(
|
||||||
|
(
|
||||||
|
((self.n_c * self.n_s - cost_index) / (self.n_c * self.n_s))
|
||||||
|
/ (self.n_s ** (i)),
|
||||||
|
cost_chain[0],
|
||||||
|
i + 1,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
next_seeds_as_array = numpy.array([s for _, s in next_seeds])
|
||||||
|
|
||||||
|
stdevs = self.get_stdevs_from_arrays(next_seeds_as_array)
|
||||||
|
_logger.info(f"got stdevs: {stdevs.stdevs}")
|
||||||
|
_logger.debug("Starting the MCMC")
|
||||||
|
all_chains = []
|
||||||
|
for seed_index, (c, s) in enumerate(next_seeds):
|
||||||
|
# chain = mcmc(s, threshold_cost, n_s, model, dot_inputs_array, actual_measurement_array, mcmc_rng, curr_cost=c, stdevs=stdevs)
|
||||||
|
# until new version gotta do
|
||||||
|
_logger.debug(
|
||||||
|
f"\t{seed_index}: getting another chain from the next seed"
|
||||||
|
)
|
||||||
|
chain = self.model.get_mcmc_chain(
|
||||||
|
s,
|
||||||
|
self.cost_function_to_use,
|
||||||
|
self.n_s,
|
||||||
|
threshold_cost,
|
||||||
|
stdevs,
|
||||||
|
initial_cost=c,
|
||||||
|
rng_arg=mcmc_rng,
|
||||||
|
)
|
||||||
|
for cost, chained in chain:
|
||||||
|
try:
|
||||||
|
filtered_cost = cost[0]
|
||||||
|
except IndexError:
|
||||||
|
filtered_cost = cost
|
||||||
|
all_chains.append((filtered_cost, chained))
|
||||||
|
_logger.debug("finished mcmc")
|
||||||
|
# _logger.debug(all_chains)
|
||||||
|
|
||||||
|
all_chains.sort(key=lambda c: c[0], reverse=True)
|
||||||
|
_logger.debug("finished sorting all_chains")
|
||||||
|
|
||||||
|
threshold_cost = all_chains[-self.n_c][0]
|
||||||
|
_logger.info(
|
||||||
|
f"current threshold cost: {threshold_cost}, at P = (1 / {self.n_s})^{i + 1}"
|
||||||
|
)
|
||||||
|
if (self.target_cost is not None) and (threshold_cost < self.target_cost):
|
||||||
|
_logger.info(
|
||||||
|
f"got a threshold cost {threshold_cost}, less than {self.target_cost}. will leave early"
|
||||||
|
)
|
||||||
|
|
||||||
|
cost_list = [c[0] for c in all_chains]
|
||||||
|
over_index = reverse_bisect_right(cost_list, self.target_cost)
|
||||||
|
|
||||||
|
shorter_probs_list = []
|
||||||
|
for cost_index, cost_chain in enumerate(all_chains):
|
||||||
|
if self.keep_probs_list:
|
||||||
|
probs_list.append(
|
||||||
|
(
|
||||||
|
(
|
||||||
|
(self.n_c * self.n_s - cost_index)
|
||||||
|
/ (self.n_c * self.n_s)
|
||||||
|
)
|
||||||
|
/ (self.n_s ** (i)),
|
||||||
|
cost_chain[0],
|
||||||
|
i + 1,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
shorter_probs_list.append(
|
||||||
|
(
|
||||||
|
cost_chain[0],
|
||||||
|
((self.n_c * self.n_s - cost_index) / (self.n_c * self.n_s))
|
||||||
|
/ (self.n_s ** (i)),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
# _logger.info(shorter_probs_list)
|
||||||
|
result = SubsetSimulationResult(
|
||||||
|
probs_list=probs_list,
|
||||||
|
over_target_cost=shorter_probs_list[over_index - 1][0],
|
||||||
|
over_target_likelihood=shorter_probs_list[over_index - 1][1],
|
||||||
|
under_target_cost=shorter_probs_list[over_index][0],
|
||||||
|
under_target_likelihood=shorter_probs_list[over_index][1],
|
||||||
|
lowest_likelihood=shorter_probs_list[-1][1],
|
||||||
|
)
|
||||||
|
return result
|
||||||
|
|
||||||
|
# _logger.debug([c[0] for c in all_chains[-n_c:]])
|
||||||
|
_logger.info(f"doing level {i + 1}")
|
||||||
|
|
||||||
|
if self.keep_probs_list:
|
||||||
|
for cost_index, cost_chain in enumerate(all_chains):
|
||||||
|
probs_list.append(
|
||||||
|
(
|
||||||
|
((self.n_c * self.n_s - cost_index) / (self.n_c * self.n_s))
|
||||||
|
/ (self.n_s ** (self.m_max)),
|
||||||
|
cost_chain[0],
|
||||||
|
self.m_max + 1,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
threshold_cost = all_chains[-self.n_c][0]
|
||||||
|
_logger.info(
|
||||||
|
f"final threshold cost: {threshold_cost}, at P = (1 / {self.n_s})^{self.m_max + 1}"
|
||||||
|
)
|
||||||
|
for a in all_chains[-10:]:
|
||||||
|
_logger.info(a)
|
||||||
|
# for prob, prob_cost in probs_list:
|
||||||
|
# _logger.info(f"\t{prob}: {prob_cost}")
|
||||||
|
probs_list.sort(key=lambda c: c[0], reverse=True)
|
||||||
|
|
||||||
|
min_likelihood = ((1) / (self.n_c * self.n_s)) / (self.n_s ** (self.m_max))
|
||||||
|
|
||||||
|
result = SubsetSimulationResult(
|
||||||
|
probs_list=probs_list,
|
||||||
|
over_target_cost=None,
|
||||||
|
over_target_likelihood=None,
|
||||||
|
under_target_cost=None,
|
||||||
|
under_target_likelihood=None,
|
||||||
|
lowest_likelihood=min_likelihood,
|
||||||
|
)
|
||||||
|
return result
|
||||||
|
|
||||||
|
def get_stdevs_from_arrays(
|
||||||
|
self, array
|
||||||
|
) -> pdme.subspace_simulation.MCMCStandardDeviation:
|
||||||
|
# stdevs = get_stdevs_from_arrays(next_seeds_as_array, model)
|
||||||
|
if self.use_adaptive_steps:
|
||||||
|
|
||||||
|
stdev_array = []
|
||||||
|
count = array.shape[1]
|
||||||
|
for dipole_index in range(count):
|
||||||
|
selected = array[:, dipole_index]
|
||||||
|
pxs = selected[:, 0]
|
||||||
|
pys = selected[:, 1]
|
||||||
|
pzs = selected[:, 2]
|
||||||
|
thetas = numpy.arccos(pzs / self.model.pfixed)
|
||||||
|
phis = numpy.arctan2(pys, pxs)
|
||||||
|
|
||||||
|
rstdevs = numpy.maximum(
|
||||||
|
numpy.std(selected, axis=0)[3:6],
|
||||||
|
self.default_r_step / (self.n_s * 10),
|
||||||
|
)
|
||||||
|
frequency_stdevs = numpy.minimum(
|
||||||
|
numpy.maximum(
|
||||||
|
numpy.std(numpy.log(selected[:, -1])),
|
||||||
|
self.default_w_log_step / (self.n_s * 10),
|
||||||
|
),
|
||||||
|
self.default_upper_w_log_step,
|
||||||
|
)
|
||||||
|
stdev_array.append(
|
||||||
|
pdme.subspace_simulation.DipoleStandardDeviation(
|
||||||
|
p_theta_step=max(
|
||||||
|
numpy.std(thetas), self.default_theta_step / (self.n_s * 10)
|
||||||
|
),
|
||||||
|
p_phi_step=max(
|
||||||
|
numpy.std(phis), self.default_phi_step / (self.n_s * 10)
|
||||||
|
),
|
||||||
|
rx_step=rstdevs[0],
|
||||||
|
ry_step=rstdevs[1],
|
||||||
|
rz_step=rstdevs[2],
|
||||||
|
w_log_step=frequency_stdevs,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
default_stdev = pdme.subspace_simulation.DipoleStandardDeviation(
|
||||||
|
self.default_phi_step,
|
||||||
|
self.default_theta_step,
|
||||||
|
self.default_r_step,
|
||||||
|
self.default_r_step,
|
||||||
|
self.default_r_step,
|
||||||
|
self.default_w_log_step,
|
||||||
|
)
|
||||||
|
stdev_array = [default_stdev]
|
||||||
|
stdevs = pdme.subspace_simulation.MCMCStandardDeviation(stdev_array)
|
||||||
|
return stdevs
|
||||||
|
|
||||||
|
|
||||||
|
def reverse_bisect_right(a, x, lo=0, hi=None):
|
||||||
|
"""Return the index where to insert item x in list a, assuming a is sorted in descending order.
|
||||||
|
|
||||||
|
The return value i is such that all e in a[:i] have e >= x, and all e in
|
||||||
|
a[i:] have e < x. So if x already appears in the list, a.insert(x) will
|
||||||
|
insert just after the rightmost x already there.
|
||||||
|
|
||||||
|
Optional args lo (default 0) and hi (default len(a)) bound the
|
||||||
|
slice of a to be searched.
|
||||||
|
|
||||||
|
Essentially, the function returns number of elements in a which are >= than x.
|
||||||
|
>>> a = [8, 6, 5, 4, 2]
|
||||||
|
>>> reverse_bisect_right(a, 5)
|
||||||
|
3
|
||||||
|
>>> a[:reverse_bisect_right(a, 5)]
|
||||||
|
[8, 6, 5]
|
||||||
|
"""
|
||||||
|
if lo < 0:
|
||||||
|
raise ValueError("lo must be non-negative")
|
||||||
|
if hi is None:
|
||||||
|
hi = len(a)
|
||||||
|
while lo < hi:
|
||||||
|
mid = (lo + hi) // 2
|
||||||
|
if x > a[mid]:
|
||||||
|
hi = mid
|
||||||
|
else:
|
||||||
|
lo = mid + 1
|
||||||
|
return lo
|
231
deepdog/temp_aware_real_spectrum_run.py
Normal file
231
deepdog/temp_aware_real_spectrum_run.py
Normal file
@@ -0,0 +1,231 @@
|
|||||||
|
import pdme.inputs
|
||||||
|
import pdme.model
|
||||||
|
import pdme.measurement
|
||||||
|
import pdme.measurement.input_types
|
||||||
|
import pdme.measurement.oscillating_dipole
|
||||||
|
import pdme.util.fast_v_calc
|
||||||
|
import pdme.util.fast_nonlocal_spectrum
|
||||||
|
from typing import Sequence, Tuple, List, Dict, Union, Mapping
|
||||||
|
import datetime
|
||||||
|
import csv
|
||||||
|
import multiprocessing
|
||||||
|
import logging
|
||||||
|
import numpy
|
||||||
|
|
||||||
|
|
||||||
|
# TODO: remove hardcode
|
||||||
|
CHUNKSIZE = 50
|
||||||
|
|
||||||
|
|
||||||
|
_logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
def get_a_result_fast_filter(input) -> int:
|
||||||
|
# (
|
||||||
|
# model,
|
||||||
|
# self.dot_inputs_array_dict,
|
||||||
|
# low_high_dict,
|
||||||
|
# self.monte_carlo_count,
|
||||||
|
# seed,
|
||||||
|
# )
|
||||||
|
model, dot_inputs_dict, low_high_dict, monte_carlo_count, seed = input
|
||||||
|
|
||||||
|
rng = numpy.random.default_rng(seed)
|
||||||
|
# TODO: A long term refactor is to pull the frequency stuff out from here. The None stands for max_frequency, which is unneeded in the actually useful models.
|
||||||
|
sample_dipoles = model.get_monte_carlo_dipole_inputs(
|
||||||
|
monte_carlo_count, None, rng_to_use=rng
|
||||||
|
)
|
||||||
|
|
||||||
|
current_sample = sample_dipoles
|
||||||
|
for temp in dot_inputs_dict.keys():
|
||||||
|
dot_inputs = dot_inputs_dict[temp]
|
||||||
|
lows, highs = low_high_dict[temp]
|
||||||
|
for di, low, high in zip(dot_inputs, lows, highs):
|
||||||
|
|
||||||
|
if len(current_sample) < 1:
|
||||||
|
break
|
||||||
|
vals = pdme.util.fast_v_calc.fast_vs_for_asymmetric_dipoleses(
|
||||||
|
numpy.array([di]), current_sample, temp
|
||||||
|
)
|
||||||
|
|
||||||
|
current_sample = current_sample[
|
||||||
|
numpy.all((vals > low) & (vals < high), axis=1)
|
||||||
|
]
|
||||||
|
return len(current_sample)
|
||||||
|
|
||||||
|
|
||||||
|
class TempAwareRealSpectrumRun:
|
||||||
|
"""
|
||||||
|
A bayes run given some real data, with potentially variable temperature.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
measurements_dict : Dict[float, Sequence[pdme.measurement.DotRangeMeasurement]]
|
||||||
|
The dot inputs for this bayes run, in a dictionary indexed by temperatures
|
||||||
|
|
||||||
|
models_with_names : models_with_names: Sequence[Tuple[str, pdme.model.DipoleModel]],
|
||||||
|
|
||||||
|
The models to evaluate.
|
||||||
|
|
||||||
|
actual_model : pdme.model.DipoleModel
|
||||||
|
The model which is actually correct.
|
||||||
|
|
||||||
|
filename_slug : str
|
||||||
|
The filename slug to include.
|
||||||
|
|
||||||
|
run_count: int
|
||||||
|
The number of runs to do.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
measurements_dict: Mapping[
|
||||||
|
float, Sequence[pdme.measurement.DotRangeMeasurement]
|
||||||
|
],
|
||||||
|
models_with_names: Sequence[Tuple[str, pdme.model.DipoleModel]],
|
||||||
|
filename_slug: str,
|
||||||
|
monte_carlo_count: int = 10000,
|
||||||
|
monte_carlo_cycles: int = 10,
|
||||||
|
target_success: int = 100,
|
||||||
|
max_monte_carlo_cycles_steps: int = 10,
|
||||||
|
chunksize: int = CHUNKSIZE,
|
||||||
|
initial_seed: int = 12345,
|
||||||
|
cap_core_count: int = 0,
|
||||||
|
) -> None:
|
||||||
|
self.measurements_dict = measurements_dict
|
||||||
|
self.dot_inputs_dict = {
|
||||||
|
k: [(measure.r, measure.f) for measure in measurements]
|
||||||
|
for k, measurements in measurements_dict.items()
|
||||||
|
}
|
||||||
|
|
||||||
|
self.dot_inputs_array_dict = {
|
||||||
|
k: pdme.measurement.input_types.dot_inputs_to_array(dot_inputs)
|
||||||
|
for k, dot_inputs in self.dot_inputs_dict.items()
|
||||||
|
}
|
||||||
|
|
||||||
|
self.models = [model for (_, model) in models_with_names]
|
||||||
|
self.model_names = [name for (name, _) in models_with_names]
|
||||||
|
self.model_count = len(self.models)
|
||||||
|
|
||||||
|
self.monte_carlo_count = monte_carlo_count
|
||||||
|
self.monte_carlo_cycles = monte_carlo_cycles
|
||||||
|
self.target_success = target_success
|
||||||
|
self.max_monte_carlo_cycles_steps = max_monte_carlo_cycles_steps
|
||||||
|
|
||||||
|
self.csv_fields = []
|
||||||
|
|
||||||
|
self.compensate_zeros = True
|
||||||
|
self.chunksize = chunksize
|
||||||
|
for name in self.model_names:
|
||||||
|
self.csv_fields.extend([f"{name}_success", f"{name}_count", f"{name}_prob"])
|
||||||
|
|
||||||
|
# for now initialise priors as uniform.
|
||||||
|
self.probabilities = [1 / self.model_count] * self.model_count
|
||||||
|
|
||||||
|
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
||||||
|
ff_string = "fast_filter"
|
||||||
|
self.filename = f"{timestamp}-{filename_slug}.realdata.{ff_string}.bayesrun.csv"
|
||||||
|
self.initial_seed = initial_seed
|
||||||
|
|
||||||
|
self.cap_core_count = cap_core_count
|
||||||
|
|
||||||
|
def go(self) -> None:
|
||||||
|
with open(self.filename, "a", newline="") as outfile:
|
||||||
|
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
|
||||||
|
writer.writeheader()
|
||||||
|
|
||||||
|
low_high_dict = {}
|
||||||
|
for temp, measurements in self.measurements_dict.items():
|
||||||
|
(
|
||||||
|
lows,
|
||||||
|
highs,
|
||||||
|
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
|
||||||
|
measurements
|
||||||
|
)
|
||||||
|
low_high_dict[temp] = (lows, highs)
|
||||||
|
|
||||||
|
# define a new seed sequence for each run
|
||||||
|
seed_sequence = numpy.random.SeedSequence(self.initial_seed)
|
||||||
|
|
||||||
|
results = []
|
||||||
|
_logger.debug("Going to iterate over models now")
|
||||||
|
core_count = multiprocessing.cpu_count() - 1 or 1
|
||||||
|
if (self.cap_core_count >= 1) and (self.cap_core_count < core_count):
|
||||||
|
core_count = self.cap_core_count
|
||||||
|
_logger.info(f"Using {core_count} cores")
|
||||||
|
for model_count, (model, model_name) in enumerate(
|
||||||
|
zip(self.models, self.model_names)
|
||||||
|
):
|
||||||
|
_logger.debug(f"Doing model #{model_count}: {model_name}")
|
||||||
|
with multiprocessing.Pool(core_count) as pool:
|
||||||
|
cycle_count = 0
|
||||||
|
cycle_success = 0
|
||||||
|
cycles = 0
|
||||||
|
while (cycles < self.max_monte_carlo_cycles_steps) and (
|
||||||
|
cycle_success <= self.target_success
|
||||||
|
):
|
||||||
|
_logger.debug(f"Starting cycle {cycles}")
|
||||||
|
cycles += 1
|
||||||
|
current_success = 0
|
||||||
|
cycle_count += self.monte_carlo_count * self.monte_carlo_cycles
|
||||||
|
|
||||||
|
# generate a seed from the sequence for each core.
|
||||||
|
# note this needs to be inside the loop for monte carlo cycle steps!
|
||||||
|
# that way we get more stuff.
|
||||||
|
seeds = seed_sequence.spawn(self.monte_carlo_cycles)
|
||||||
|
|
||||||
|
result_func = get_a_result_fast_filter
|
||||||
|
|
||||||
|
current_success = sum(
|
||||||
|
pool.imap_unordered(
|
||||||
|
result_func,
|
||||||
|
[
|
||||||
|
(
|
||||||
|
model,
|
||||||
|
self.dot_inputs_array_dict,
|
||||||
|
low_high_dict,
|
||||||
|
self.monte_carlo_count,
|
||||||
|
seed,
|
||||||
|
)
|
||||||
|
for seed in seeds
|
||||||
|
],
|
||||||
|
self.chunksize,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
cycle_success += current_success
|
||||||
|
_logger.debug(f"current running successes: {cycle_success}")
|
||||||
|
results.append((cycle_count, cycle_success))
|
||||||
|
|
||||||
|
_logger.debug("Done, constructing output now")
|
||||||
|
row: Dict[str, Union[int, float, str]] = {}
|
||||||
|
|
||||||
|
successes: List[float] = []
|
||||||
|
counts: List[int] = []
|
||||||
|
for model_index, (name, (count, result)) in enumerate(
|
||||||
|
zip(self.model_names, results)
|
||||||
|
):
|
||||||
|
|
||||||
|
row[f"{name}_success"] = result
|
||||||
|
row[f"{name}_count"] = count
|
||||||
|
successes.append(max(result, 0.5))
|
||||||
|
counts.append(count)
|
||||||
|
|
||||||
|
success_weight = sum(
|
||||||
|
[
|
||||||
|
(succ / count) * prob
|
||||||
|
for succ, count, prob in zip(successes, counts, self.probabilities)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
new_probabilities = [
|
||||||
|
(succ / count) * old_prob / success_weight
|
||||||
|
for succ, count, old_prob in zip(successes, counts, self.probabilities)
|
||||||
|
]
|
||||||
|
self.probabilities = new_probabilities
|
||||||
|
for name, probability in zip(self.model_names, self.probabilities):
|
||||||
|
row[f"{name}_prob"] = probability
|
||||||
|
_logger.info(row)
|
||||||
|
|
||||||
|
with open(self.filename, "a", newline="") as outfile:
|
||||||
|
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
|
||||||
|
writer.writerow(row)
|
2
do.sh
2
do.sh
@@ -18,7 +18,7 @@ test() {
|
|||||||
|
|
||||||
fmt() {
|
fmt() {
|
||||||
poetry run black .
|
poetry run black .
|
||||||
find . -type f -name "*.py" -exec sed -i -e 's/ /\t/g' {} \;
|
find . -not \( -path "./.*" -type d -prune \) -type f -name "*.py" -exec sed -i -e 's/ /\t/g' {} \;
|
||||||
}
|
}
|
||||||
|
|
||||||
release() {
|
release() {
|
||||||
|
95
flake.lock
generated
Normal file
95
flake.lock
generated
Normal file
@@ -0,0 +1,95 @@
|
|||||||
|
{
|
||||||
|
"nodes": {
|
||||||
|
"flake-utils": {
|
||||||
|
"locked": {
|
||||||
|
"lastModified": 1648297722,
|
||||||
|
"narHash": "sha256-W+qlPsiZd8F3XkzXOzAoR+mpFqzm3ekQkJNa+PIh1BQ=",
|
||||||
|
"owner": "numtide",
|
||||||
|
"repo": "flake-utils",
|
||||||
|
"rev": "0f8662f1319ad6abf89b3380dd2722369fc51ade",
|
||||||
|
"type": "github"
|
||||||
|
},
|
||||||
|
"original": {
|
||||||
|
"owner": "numtide",
|
||||||
|
"repo": "flake-utils",
|
||||||
|
"rev": "0f8662f1319ad6abf89b3380dd2722369fc51ade",
|
||||||
|
"type": "github"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"flake-utils_2": {
|
||||||
|
"locked": {
|
||||||
|
"lastModified": 1653893745,
|
||||||
|
"narHash": "sha256-0jntwV3Z8//YwuOjzhV2sgJJPt+HY6KhU7VZUL0fKZQ=",
|
||||||
|
"owner": "numtide",
|
||||||
|
"repo": "flake-utils",
|
||||||
|
"rev": "1ed9fb1935d260de5fe1c2f7ee0ebaae17ed2fa1",
|
||||||
|
"type": "github"
|
||||||
|
},
|
||||||
|
"original": {
|
||||||
|
"owner": "numtide",
|
||||||
|
"repo": "flake-utils",
|
||||||
|
"type": "github"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nixpkgs": {
|
||||||
|
"locked": {
|
||||||
|
"lastModified": 1655087213,
|
||||||
|
"narHash": "sha256-4R5oQ+OwGAAcXWYrxC4gFMTUSstGxaN8kN7e8hkum/8=",
|
||||||
|
"owner": "NixOS",
|
||||||
|
"repo": "nixpkgs",
|
||||||
|
"rev": "37b6b161e536fddca54424cf80662bce735bdd1e",
|
||||||
|
"type": "github"
|
||||||
|
},
|
||||||
|
"original": {
|
||||||
|
"owner": "NixOS",
|
||||||
|
"repo": "nixpkgs",
|
||||||
|
"rev": "37b6b161e536fddca54424cf80662bce735bdd1e",
|
||||||
|
"type": "github"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nixpkgs_2": {
|
||||||
|
"locked": {
|
||||||
|
"lastModified": 1655046959,
|
||||||
|
"narHash": "sha256-gxqHZKq1ReLDe6ZMJSbmSZlLY95DsVq5o6jQihhzvmw=",
|
||||||
|
"owner": "NixOS",
|
||||||
|
"repo": "nixpkgs",
|
||||||
|
"rev": "07bf3d25ce1da3bee6703657e6a787a4c6cdcea9",
|
||||||
|
"type": "github"
|
||||||
|
},
|
||||||
|
"original": {
|
||||||
|
"owner": "NixOS",
|
||||||
|
"repo": "nixpkgs",
|
||||||
|
"type": "github"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"poetry2nix": {
|
||||||
|
"inputs": {
|
||||||
|
"flake-utils": "flake-utils_2",
|
||||||
|
"nixpkgs": "nixpkgs_2"
|
||||||
|
},
|
||||||
|
"locked": {
|
||||||
|
"lastModified": 1654921554,
|
||||||
|
"narHash": "sha256-hkfMdQAHSwLWlg0sBVvgrQdIiBP45U1/ktmFpY4g2Mo=",
|
||||||
|
"owner": "nix-community",
|
||||||
|
"repo": "poetry2nix",
|
||||||
|
"rev": "7b71679fa7df00e1678fc3f1d1d4f5f372341b63",
|
||||||
|
"type": "github"
|
||||||
|
},
|
||||||
|
"original": {
|
||||||
|
"owner": "nix-community",
|
||||||
|
"repo": "poetry2nix",
|
||||||
|
"rev": "7b71679fa7df00e1678fc3f1d1d4f5f372341b63",
|
||||||
|
"type": "github"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"root": {
|
||||||
|
"inputs": {
|
||||||
|
"flake-utils": "flake-utils",
|
||||||
|
"nixpkgs": "nixpkgs",
|
||||||
|
"poetry2nix": "poetry2nix"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"root": "root",
|
||||||
|
"version": 7
|
||||||
|
}
|
63
flake.nix
Normal file
63
flake.nix
Normal file
@@ -0,0 +1,63 @@
|
|||||||
|
{
|
||||||
|
description = "Application packaged using poetry2nix";
|
||||||
|
|
||||||
|
inputs.flake-utils.url = "github:numtide/flake-utils?rev=0f8662f1319ad6abf89b3380dd2722369fc51ade";
|
||||||
|
inputs.nixpkgs.url = "github:NixOS/nixpkgs?rev=37b6b161e536fddca54424cf80662bce735bdd1e";
|
||||||
|
inputs.poetry2nix.url = "github:nix-community/poetry2nix?rev=7b71679fa7df00e1678fc3f1d1d4f5f372341b63";
|
||||||
|
|
||||||
|
outputs = { self, nixpkgs, flake-utils, poetry2nix }:
|
||||||
|
{
|
||||||
|
# Nixpkgs overlay providing the application
|
||||||
|
overlay = nixpkgs.lib.composeManyExtensions [
|
||||||
|
poetry2nix.overlay
|
||||||
|
(final: prev: {
|
||||||
|
# The application
|
||||||
|
deepdog = prev.poetry2nix.mkPoetryApplication {
|
||||||
|
overrides = final.poetry2nix.overrides.withDefaults (self: super: {
|
||||||
|
# …
|
||||||
|
# workaround https://github.com/nix-community/poetry2nix/issues/568
|
||||||
|
pdme = super.pdme.overridePythonAttrs (old: {
|
||||||
|
buildInputs = old.buildInputs or [ ] ++ [ final.python39.pkgs.poetry-core ];
|
||||||
|
});
|
||||||
|
});
|
||||||
|
projectDir = ./.;
|
||||||
|
};
|
||||||
|
deepdogEnv = prev.poetry2nix.mkPoetryEnv {
|
||||||
|
overrides = final.poetry2nix.overrides.withDefaults (self: super: {
|
||||||
|
# …
|
||||||
|
# workaround https://github.com/nix-community/poetry2nix/issues/568
|
||||||
|
pdme = super.pdme.overridePythonAttrs (old: {
|
||||||
|
buildInputs = old.buildInputs or [ ] ++ [ final.python39.pkgs.poetry-core ];
|
||||||
|
});
|
||||||
|
});
|
||||||
|
projectDir = ./.;
|
||||||
|
};
|
||||||
|
})
|
||||||
|
];
|
||||||
|
} // (flake-utils.lib.eachDefaultSystem (system:
|
||||||
|
let
|
||||||
|
pkgs = import nixpkgs {
|
||||||
|
inherit system;
|
||||||
|
overlays = [ self.overlay ];
|
||||||
|
};
|
||||||
|
in
|
||||||
|
{
|
||||||
|
apps = {
|
||||||
|
deepdog = pkgs.deepdog;
|
||||||
|
};
|
||||||
|
|
||||||
|
defaultApp = pkgs.deepdog;
|
||||||
|
devShell = pkgs.mkShell {
|
||||||
|
buildInputs = [
|
||||||
|
pkgs.poetry
|
||||||
|
pkgs.deepdogEnv
|
||||||
|
pkgs.deepdog
|
||||||
|
];
|
||||||
|
shellHook = ''
|
||||||
|
export DO_NIX_CUSTOM=1
|
||||||
|
'';
|
||||||
|
packages = [ pkgs.nodejs-16_x ];
|
||||||
|
};
|
||||||
|
|
||||||
|
}));
|
||||||
|
}
|
@@ -1,9 +1,11 @@
|
|||||||
apiVersion: v1
|
apiVersion: v1
|
||||||
kind: Pod
|
kind: Pod
|
||||||
spec:
|
spec:
|
||||||
|
imagePullSecrets:
|
||||||
|
- name: regcreds
|
||||||
containers: # list of containers that you want present for your build, you can define a default container in the Jenkinsfile
|
containers: # list of containers that you want present for your build, you can define a default container in the Jenkinsfile
|
||||||
- name: python
|
- name: poetry
|
||||||
image: python:3.8
|
image: ghcr.io/dmallubhotla/poetry-image:1
|
||||||
command: ["tail", "-f", "/dev/null"] # this or any command that is bascially a noop is required, this is so that you don't overwrite the entrypoint of the base container
|
command: ["tail", "-f", "/dev/null"] # this or any command that is bascially a noop is required, this is so that you don't overwrite the entrypoint of the base container
|
||||||
imagePullPolicy: Always # use cache or pull image for agent
|
imagePullPolicy: Always # use cache or pull image for agent
|
||||||
resources: # limits the resources your build contaienr
|
resources: # limits the resources your build contaienr
|
||||||
|
937
poetry.lock
generated
937
poetry.lock
generated
File diff suppressed because it is too large
Load Diff
@@ -1,20 +1,23 @@
|
|||||||
[tool.poetry]
|
[tool.poetry]
|
||||||
name = "deepdog"
|
name = "deepdog"
|
||||||
version = "0.6.0"
|
version = "0.7.4"
|
||||||
description = ""
|
description = ""
|
||||||
authors = ["Deepak Mallubhotla <dmallubhotla+github@gmail.com>"]
|
authors = ["Deepak Mallubhotla <dmallubhotla+github@gmail.com>"]
|
||||||
|
|
||||||
[tool.poetry.dependencies]
|
[tool.poetry.dependencies]
|
||||||
python = "^3.8,<3.10"
|
python = ">=3.8.1,<3.10"
|
||||||
pdme = "0.8.2"
|
pdme = "^0.9.1"
|
||||||
|
numpy = "1.22.3"
|
||||||
|
scipy = "1.10"
|
||||||
|
|
||||||
[tool.poetry.dev-dependencies]
|
[tool.poetry.dev-dependencies]
|
||||||
pytest = ">=6"
|
pytest = ">=6"
|
||||||
flake8 = "^4.0.1"
|
flake8 = "^4.0.1"
|
||||||
pytest-cov = "^3.0.0"
|
pytest-cov = "^4.1.0"
|
||||||
mypy = "^0.950"
|
mypy = "^0.971"
|
||||||
python-semantic-release = "^7.24.0"
|
python-semantic-release = "^7.24.0"
|
||||||
black = "^22.3.0"
|
black = "^22.3.0"
|
||||||
|
syrupy = "^4.0.8"
|
||||||
|
|
||||||
[build-system]
|
[build-system]
|
||||||
requires = ["poetry-core>=1.0.0"]
|
requires = ["poetry-core>=1.0.0"]
|
||||||
|
177
tests/__snapshots__/test_bayes_run_with_ss.ambr
Normal file
177
tests/__snapshots__/test_bayes_run_with_ss.ambr
Normal file
@@ -0,0 +1,177 @@
|
|||||||
|
# serializer version: 1
|
||||||
|
# name: test_basic_analysis
|
||||||
|
list([
|
||||||
|
dict({
|
||||||
|
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 0.1,
|
||||||
|
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 0.3333333333333333,
|
||||||
|
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.1,
|
||||||
|
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.3333333333333333,
|
||||||
|
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.1,
|
||||||
|
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.3333333333333333,
|
||||||
|
'dipole_frequency_1': 0.006029931414230269,
|
||||||
|
'dipole_frequency_2': 85436.78758379082,
|
||||||
|
'dipole_location_1': array([-4.76615152, -6.33160296, 5.29522808]),
|
||||||
|
'dipole_location_2': array([-4.72700391, -2.06478573, 6.52467702]),
|
||||||
|
'dipole_moment_1': array([ 860.14181416, -450.27082062, -239.60852996]),
|
||||||
|
'dipole_moment_2': array([ 908.18325588, -208.52681777, -362.93214244]),
|
||||||
|
}),
|
||||||
|
dict({
|
||||||
|
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 0.45,
|
||||||
|
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 0.3103448275862069,
|
||||||
|
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.9,
|
||||||
|
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.6206896551724138,
|
||||||
|
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.1,
|
||||||
|
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.06896551724137932,
|
||||||
|
'dipole_frequency_1': 102275.63477261562,
|
||||||
|
'dipole_frequency_2': 1755280.9783485082,
|
||||||
|
'dipole_location_1': array([ 4.71515397, -9.70362197, 5.43016546]),
|
||||||
|
'dipole_location_2': array([3.42476038, 3.88562934, 5.15034328]),
|
||||||
|
'dipole_moment_1': array([-502.60742674, -790.60222587, 349.7626267 ]),
|
||||||
|
'dipole_moment_2': array([-192.42708465, -434.81009148, -879.7226844 ]),
|
||||||
|
}),
|
||||||
|
dict({
|
||||||
|
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 0.7,
|
||||||
|
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 0.6631578947368421,
|
||||||
|
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.1,
|
||||||
|
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.18947368421052635,
|
||||||
|
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.7,
|
||||||
|
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.1473684210526316,
|
||||||
|
'dipole_frequency_1': 2896.799464036654,
|
||||||
|
'dipole_frequency_2': 9.980565189326681e-05,
|
||||||
|
'dipole_location_1': array([-4.97465789, 12.54716531, 6.06324588]),
|
||||||
|
'dipole_location_2': array([ 9.84518459, -11.1183876 , 7.35028226]),
|
||||||
|
'dipole_moment_1': array([997.67961917, 19.6376112 , 65.19004305]),
|
||||||
|
'dipole_moment_2': array([305.63093655, 440.57669389, 844.08643362]),
|
||||||
|
}),
|
||||||
|
dict({
|
||||||
|
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 0.1,
|
||||||
|
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 0.663157894736842,
|
||||||
|
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.1,
|
||||||
|
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.18947368421052635,
|
||||||
|
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.1,
|
||||||
|
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.1473684210526316,
|
||||||
|
'dipole_frequency_1': 1.4522667818288244,
|
||||||
|
'dipole_frequency_2': 2704.9795645301197,
|
||||||
|
'dipole_location_1': array([ 7.38183022, 16.6745801 , 7.10428414]),
|
||||||
|
'dipole_location_2': array([-8.15636906, -9.56609132, 6.34141559]),
|
||||||
|
'dipole_moment_1': array([-145.9924693 , 738.74936496, 657.97839986]),
|
||||||
|
'dipole_moment_2': array([-960.16113239, 104.96824669, -258.98314046]),
|
||||||
|
}),
|
||||||
|
dict({
|
||||||
|
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 0.9,
|
||||||
|
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 0.9465776293823038,
|
||||||
|
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.1,
|
||||||
|
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.030050083472454105,
|
||||||
|
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.1,
|
||||||
|
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.02337228714524208,
|
||||||
|
'dipole_frequency_1': 3827.2315421318913,
|
||||||
|
'dipole_frequency_2': 1.9301094166184413e-05,
|
||||||
|
'dipole_location_1': array([ 5.02067673, -0.9783039 , 6.1431897 ]),
|
||||||
|
'dipole_location_2': array([ 4.66628999, 10.80907459, 7.21771744]),
|
||||||
|
'dipole_moment_1': array([ 871.30659253, -299.17389491, -388.99846068]),
|
||||||
|
'dipole_moment_2': array([-189.87268624, 677.28285845, 710.79975568]),
|
||||||
|
}),
|
||||||
|
])
|
||||||
|
# ---
|
||||||
|
# name: test_bayesss_with_tighter_cost
|
||||||
|
list([
|
||||||
|
dict({
|
||||||
|
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
|
||||||
|
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 0.33333333333333337,
|
||||||
|
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
|
||||||
|
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.33333333333333337,
|
||||||
|
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
|
||||||
|
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.33333333333333337,
|
||||||
|
'dipole_frequency_1': 0.006029931414230269,
|
||||||
|
'dipole_frequency_2': 85436.78758379082,
|
||||||
|
'dipole_location_1': array([-4.76615152, -6.33160296, 5.29522808]),
|
||||||
|
'dipole_location_2': array([-4.72700391, -2.06478573, 6.52467702]),
|
||||||
|
'dipole_moment_1': array([ 860.14181416, -450.27082062, -239.60852996]),
|
||||||
|
'dipole_moment_2': array([ 908.18325588, -208.52681777, -362.93214244]),
|
||||||
|
}),
|
||||||
|
dict({
|
||||||
|
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 0.0109375,
|
||||||
|
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 0.1044776119402985,
|
||||||
|
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.03125,
|
||||||
|
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.2985074626865672,
|
||||||
|
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.0625,
|
||||||
|
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.5970149253731344,
|
||||||
|
'dipole_frequency_1': 102275.63477261562,
|
||||||
|
'dipole_frequency_2': 1755280.9783485082,
|
||||||
|
'dipole_location_1': array([ 4.71515397, -9.70362197, 5.43016546]),
|
||||||
|
'dipole_location_2': array([3.42476038, 3.88562934, 5.15034328]),
|
||||||
|
'dipole_moment_1': array([-502.60742674, -790.60222587, 349.7626267 ]),
|
||||||
|
'dipole_moment_2': array([-192.42708465, -434.81009148, -879.7226844 ]),
|
||||||
|
}),
|
||||||
|
dict({
|
||||||
|
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
|
||||||
|
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 7.291135021404688e-05,
|
||||||
|
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.021875,
|
||||||
|
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.4666326413699001,
|
||||||
|
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.0125,
|
||||||
|
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.5332944472798858,
|
||||||
|
'dipole_frequency_1': 2896.799464036654,
|
||||||
|
'dipole_frequency_2': 9.980565189326681e-05,
|
||||||
|
'dipole_location_1': array([-4.97465789, 12.54716531, 6.06324588]),
|
||||||
|
'dipole_location_2': array([ 9.84518459, -11.1183876 , 7.35028226]),
|
||||||
|
'dipole_moment_1': array([997.67961917, 19.6376112 , 65.19004305]),
|
||||||
|
'dipole_moment_2': array([305.63093655, 440.57669389, 844.08643362]),
|
||||||
|
}),
|
||||||
|
dict({
|
||||||
|
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
|
||||||
|
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 7.291135021404688e-05,
|
||||||
|
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
|
||||||
|
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.4666326413699001,
|
||||||
|
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
|
||||||
|
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.5332944472798858,
|
||||||
|
'dipole_frequency_1': 1.4522667818288244,
|
||||||
|
'dipole_frequency_2': 2704.9795645301197,
|
||||||
|
'dipole_location_1': array([ 7.38183022, 16.6745801 , 7.10428414]),
|
||||||
|
'dipole_location_2': array([-8.15636906, -9.56609132, 6.34141559]),
|
||||||
|
'dipole_moment_1': array([-145.9924693 , 738.74936496, 657.97839986]),
|
||||||
|
'dipole_moment_2': array([-960.16113239, 104.96824669, -258.98314046]),
|
||||||
|
}),
|
||||||
|
dict({
|
||||||
|
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 0.175,
|
||||||
|
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 0.00012008361740869356,
|
||||||
|
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.05625,
|
||||||
|
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.24702915581216964,
|
||||||
|
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.15,
|
||||||
|
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.7528507605704217,
|
||||||
|
'dipole_frequency_1': 3827.2315421318913,
|
||||||
|
'dipole_frequency_2': 1.9301094166184413e-05,
|
||||||
|
'dipole_location_1': array([ 5.02067673, -0.9783039 , 6.1431897 ]),
|
||||||
|
'dipole_location_2': array([ 4.66628999, 10.80907459, 7.21771744]),
|
||||||
|
'dipole_moment_1': array([ 871.30659253, -299.17389491, -388.99846068]),
|
||||||
|
'dipole_moment_2': array([-189.87268624, 677.28285845, 710.79975568]),
|
||||||
|
}),
|
||||||
|
dict({
|
||||||
|
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
|
||||||
|
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 4.9116305003549454e-08,
|
||||||
|
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.0109375,
|
||||||
|
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.11316396672817797,
|
||||||
|
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.028125,
|
||||||
|
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.886835984155517,
|
||||||
|
'dipole_frequency_1': 1.1715179359592061e-05,
|
||||||
|
'dipole_frequency_2': 0.0019103783276337497,
|
||||||
|
'dipole_location_1': array([-0.95736547, 1.09273812, 7.47158641]),
|
||||||
|
'dipole_location_2': array([ -3.18510322, -15.64493131, 5.81623624]),
|
||||||
|
'dipole_moment_1': array([-184.64961369, 956.56786553, 225.57136075]),
|
||||||
|
'dipole_moment_2': array([ -34.63395137, 801.17771816, -597.42342885]),
|
||||||
|
}),
|
||||||
|
dict({
|
||||||
|
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
|
||||||
|
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 1.977090156727901e-10,
|
||||||
|
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
|
||||||
|
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.00045552157211010855,
|
||||||
|
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.002734375,
|
||||||
|
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.9995444782301809,
|
||||||
|
'dipole_frequency_1': 999786.9069039805,
|
||||||
|
'dipole_frequency_2': 186034.67996840767,
|
||||||
|
'dipole_location_1': array([-5.59679125, 6.3411602 , 5.33602522]),
|
||||||
|
'dipole_location_2': array([-0.03412955, -6.83522954, 5.58551513]),
|
||||||
|
'dipole_moment_1': array([826.38270589, 491.81526944, 274.24325726]),
|
||||||
|
'dipole_moment_2': array([ 202.74745884, -656.07483714, -726.95204519]),
|
||||||
|
}),
|
||||||
|
])
|
||||||
|
# ---
|
158
tests/test_bayes_run_with_ss.py
Normal file
158
tests/test_bayes_run_with_ss.py
Normal file
@@ -0,0 +1,158 @@
|
|||||||
|
import deepdog
|
||||||
|
import logging
|
||||||
|
import logging.config
|
||||||
|
|
||||||
|
import numpy.random
|
||||||
|
|
||||||
|
from pdme.model import (
|
||||||
|
LogSpacedRandomCountMultipleDipoleFixedMagnitudeModel,
|
||||||
|
LogSpacedRandomCountMultipleDipoleFixedMagnitudeXYModel,
|
||||||
|
LogSpacedRandomCountMultipleDipoleFixedMagnitudeFixedOrientationModel,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
_logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
def fixed_z_model_func(
|
||||||
|
xmin,
|
||||||
|
xmax,
|
||||||
|
ymin,
|
||||||
|
ymax,
|
||||||
|
zmin,
|
||||||
|
zmax,
|
||||||
|
wexp_min,
|
||||||
|
wexp_max,
|
||||||
|
pfixed,
|
||||||
|
n_max,
|
||||||
|
prob_occupancy,
|
||||||
|
):
|
||||||
|
return LogSpacedRandomCountMultipleDipoleFixedMagnitudeFixedOrientationModel(
|
||||||
|
xmin,
|
||||||
|
xmax,
|
||||||
|
ymin,
|
||||||
|
ymax,
|
||||||
|
zmin,
|
||||||
|
zmax,
|
||||||
|
wexp_min,
|
||||||
|
wexp_max,
|
||||||
|
pfixed,
|
||||||
|
0,
|
||||||
|
0,
|
||||||
|
n_max,
|
||||||
|
prob_occupancy,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_model(orientation):
|
||||||
|
model_funcs = {
|
||||||
|
"fixedz": fixed_z_model_func,
|
||||||
|
"free": LogSpacedRandomCountMultipleDipoleFixedMagnitudeModel,
|
||||||
|
"fixedxy": LogSpacedRandomCountMultipleDipoleFixedMagnitudeXYModel,
|
||||||
|
}
|
||||||
|
model = model_funcs[orientation](
|
||||||
|
-10,
|
||||||
|
10,
|
||||||
|
-17.5,
|
||||||
|
17.5,
|
||||||
|
5,
|
||||||
|
7.5,
|
||||||
|
-5,
|
||||||
|
6.5,
|
||||||
|
10**3,
|
||||||
|
2,
|
||||||
|
0.99999999,
|
||||||
|
)
|
||||||
|
model.n = 2
|
||||||
|
model.rng = numpy.random.default_rng(1234)
|
||||||
|
|
||||||
|
return (
|
||||||
|
f"connors_geom-5height-orientation_{orientation}-pfixexp_{3}-dipole_count_{2}",
|
||||||
|
model,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def test_basic_analysis(snapshot):
|
||||||
|
|
||||||
|
dot_positions = [[0, 0, 0], [0, 1, 0]]
|
||||||
|
|
||||||
|
freqs = [1, 10, 100]
|
||||||
|
models = []
|
||||||
|
|
||||||
|
orientations = ["free", "fixedxy", "fixedz"]
|
||||||
|
for orientation in orientations:
|
||||||
|
models.append(get_model(orientation))
|
||||||
|
|
||||||
|
_logger.info(f"have {len(models)} models to look at")
|
||||||
|
if len(models) == 1:
|
||||||
|
_logger.info(f"only one model, name: {models[0][0]}")
|
||||||
|
|
||||||
|
square_run = deepdog.BayesRunWithSubspaceSimulation(
|
||||||
|
dot_positions,
|
||||||
|
freqs,
|
||||||
|
models,
|
||||||
|
models[0][1],
|
||||||
|
filename_slug="test",
|
||||||
|
end_threshold=0.9,
|
||||||
|
ss_n_c=5,
|
||||||
|
ss_n_s=2,
|
||||||
|
ss_m_max=10,
|
||||||
|
ss_target_cost=150,
|
||||||
|
ss_level_0_seed=200,
|
||||||
|
ss_mcmc_seed=20,
|
||||||
|
ss_use_adaptive_steps=True,
|
||||||
|
ss_default_phi_step=0.01,
|
||||||
|
ss_default_theta_step=0.01,
|
||||||
|
ss_default_r_step=0.01,
|
||||||
|
ss_default_w_log_step=0.01,
|
||||||
|
ss_default_upper_w_log_step=4,
|
||||||
|
ss_dump_last_generation=False,
|
||||||
|
write_output_to_bayesruncsv=False,
|
||||||
|
ss_initial_costs_chunk_size=1000,
|
||||||
|
)
|
||||||
|
result = square_run.go()
|
||||||
|
|
||||||
|
assert result == snapshot
|
||||||
|
|
||||||
|
|
||||||
|
def test_bayesss_with_tighter_cost(snapshot):
|
||||||
|
|
||||||
|
dot_positions = [[0, 0, 0], [0, 1, 0]]
|
||||||
|
|
||||||
|
freqs = [1, 10, 100]
|
||||||
|
models = []
|
||||||
|
|
||||||
|
orientations = ["free", "fixedxy", "fixedz"]
|
||||||
|
for orientation in orientations:
|
||||||
|
models.append(get_model(orientation))
|
||||||
|
|
||||||
|
_logger.info(f"have {len(models)} models to look at")
|
||||||
|
if len(models) == 1:
|
||||||
|
_logger.info(f"only one model, name: {models[0][0]}")
|
||||||
|
|
||||||
|
square_run = deepdog.BayesRunWithSubspaceSimulation(
|
||||||
|
dot_positions,
|
||||||
|
freqs,
|
||||||
|
models,
|
||||||
|
models[0][1],
|
||||||
|
filename_slug="test",
|
||||||
|
end_threshold=0.9,
|
||||||
|
ss_n_c=5,
|
||||||
|
ss_n_s=2,
|
||||||
|
ss_m_max=10,
|
||||||
|
ss_target_cost=1.5,
|
||||||
|
ss_level_0_seed=200,
|
||||||
|
ss_mcmc_seed=20,
|
||||||
|
ss_use_adaptive_steps=True,
|
||||||
|
ss_default_phi_step=0.01,
|
||||||
|
ss_default_theta_step=0.01,
|
||||||
|
ss_default_r_step=0.01,
|
||||||
|
ss_default_w_log_step=0.01,
|
||||||
|
ss_default_upper_w_log_step=4,
|
||||||
|
ss_dump_last_generation=False,
|
||||||
|
write_output_to_bayesruncsv=False,
|
||||||
|
ss_initial_costs_chunk_size=1
|
||||||
|
)
|
||||||
|
result = square_run.go()
|
||||||
|
|
||||||
|
assert result == snapshot
|
Reference in New Issue
Block a user