Compare commits

..

22 Commits
0.7.9 ... 1.0.1

Author SHA1 Message Date
d28c190816 chore(release): 1.0.1
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2024-05-01 21:08:00 -05:00
0262de060f nix: adds node for npx in dev shell 2024-05-01 21:07:48 -05:00
e25db1e0f6 fix: fixes issue of zero division error with no successes for anything
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-05-01 20:37:08 -05:00
8fdbe4d334 chore(release): 1.0.0
Some checks are pending
gitea-physics/deepdog/pipeline/head Build started...
gitea-physics/deepdog/pipeline/tag Build started...
2024-05-01 15:49:57 -05:00
406a1485da build: justfile allows version 2024-05-01 15:49:01 -05:00
6dc66b1c27 release: allows dynamic release as arg 2024-05-01 15:43:33 -05:00
f2b1a1dd3b feat: Adds more powerful direct mc runs to sub for old real spectrum run
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-05-01 15:22:59 -05:00
cb166a399d deps: updates pdme to 1.0.0 release yay 2024-04-28 21:43:11 -05:00
7108dd0111 feat!: allows new seed spec instead of cli arg, removes old cli arg
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-04-28 20:54:58 -05:00
2105754911 feat: adds additional file slug parsing 2024-04-28 20:54:15 -05:00
f3ba4cbfd3 fix: no longer throws error for overlapping keys, the warning should hopefully be enough? 2024-04-28 20:51:43 -05:00
e5f7085324 chore(release): 0.8.1
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2024-04-28 04:27:47 -05:00
578481324b chore(release): 0.8.1 2024-04-28 04:27:32 -05:00
bf8ac9850d release: fixes standard version updater which didn't allow minor version to be multidigit 2024-04-28 04:27:06 -05:00
ab408b6412 chore(release): 0.8.1 2024-04-28 04:19:08 -05:00
4aa0a6f234 chore(release): 0.8.0
Some checks failed
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag There was a failure building this commit
2024-04-28 04:08:02 -05:00
f9646e3386 fix!: fixes the spin qubit frequency phase shift calculation which had an index problem 2024-04-28 04:07:35 -05:00
3b612b960e chore(release): 0.7.10
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2024-04-27 23:06:24 -05:00
b0ad4bead0 feat: better management of cli wrapper 2024-04-27 23:04:33 -05:00
4b2e573715 feat: adds cli probs 2024-04-27 18:43:25 -05:00
12e6916ab2 doc: documentation for myself because i'll forget otherwise
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-04-27 12:25:39 -05:00
1e76f63725 git: ignores local_scripts directory as place to run stuff while developing
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-04-25 16:18:14 -05:00
23 changed files with 1216 additions and 311 deletions

2
.gitignore vendored
View File

@@ -143,3 +143,5 @@ dmypy.json
cython_debug/ cython_debug/
*.csv *.csv
local_scripts/

View File

@@ -2,6 +2,54 @@
All notable changes to this project will be documented in this file. See [standard-version](https://github.com/conventional-changelog/standard-version) for commit guidelines. All notable changes to this project will be documented in this file. See [standard-version](https://github.com/conventional-changelog/standard-version) for commit guidelines.
### [1.0.1](https://gitea.deepak.science:2222/physics/deepdog/compare/1.0.0...1.0.1) (2024-05-02)
### Bug Fixes
* fixes issue of zero division error with no successes for anything ([e25db1e](https://gitea.deepak.science:2222/physics/deepdog/commit/e25db1e0f677e8d9a657fa1631305cc8f05ff9ff))
## [1.0.0](https://gitea.deepak.science:2222/physics/deepdog/compare/0.8.1...1.0.0) (2024-05-01)
### ⚠ BREAKING CHANGES
* allows new seed spec instead of cli arg, removes old cli arg
### Features
* adds additional file slug parsing ([2105754](https://gitea.deepak.science:2222/physics/deepdog/commit/2105754911c89bde9dcbea9866462225604a3524))
* Adds more powerful direct mc runs to sub for old real spectrum run ([f2b1a1d](https://gitea.deepak.science:2222/physics/deepdog/commit/f2b1a1dd3b3436e37d84f7843b9b2a202be4b51c))
* allows new seed spec instead of cli arg, removes old cli arg ([7108dd0](https://gitea.deepak.science:2222/physics/deepdog/commit/7108dd0111c7dfd6ec204df1d0058530cd3dcab9))
### Bug Fixes
* no longer throws error for overlapping keys, the warning should hopefully be enough? ([f3ba4cb](https://gitea.deepak.science:2222/physics/deepdog/commit/f3ba4cbfd36a9f08cdc4d8774a7f745f8c98bac3))
### [0.8.1](https://gitea.deepak.science:2222/physics/deepdog/compare/0.8.0...0.8.1) (2024-04-28)
### [0.8.1](https://gitea.deepak.science:2222/physics/deepdog/compare/0.8.0...0.8.1) (2024-04-28)
## [0.8.0](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.10...0.8.0) (2024-04-28)
### ⚠ BREAKING CHANGES
* fixes the spin qubit frequency phase shift calculation which had an index problem
### Bug Fixes
* fixes the spin qubit frequency phase shift calculation which had an index problem ([f9646e3](https://gitea.deepak.science:2222/physics/deepdog/commit/f9646e33868e1a0da8ab663230c0c692ac25bb74))
### [0.7.10](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.9...0.7.10) (2024-04-28)
### Features
* adds cli probs ([4b2e573](https://gitea.deepak.science:2222/physics/deepdog/commit/4b2e57371546731137b011461849bb849d4d4e0f))
* better management of cli wrapper ([b0ad4be](https://gitea.deepak.science:2222/physics/deepdog/commit/b0ad4bead0d4762eb7f848f6e557f6d9b61200b9))
### [0.7.9](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.8...0.7.9) (2024-04-21) ### [0.7.9](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.8...0.7.9) (2024-04-21)

View File

@@ -5,7 +5,7 @@
[![Jenkins](https://img.shields.io/jenkins/build?jobUrl=https%3A%2F%2Fjenkins.deepak.science%2Fjob%2Fgitea-physics%2Fjob%2Fdeepdog%2Fjob%2Fmaster&style=flat-square)](https://jenkins.deepak.science/job/gitea-physics/job/deepdog/job/master/) [![Jenkins](https://img.shields.io/jenkins/build?jobUrl=https%3A%2F%2Fjenkins.deepak.science%2Fjob%2Fgitea-physics%2Fjob%2Fdeepdog%2Fjob%2Fmaster&style=flat-square)](https://jenkins.deepak.science/job/gitea-physics/job/deepdog/job/master/)
![Jenkins tests](https://img.shields.io/jenkins/tests?compact_message&jobUrl=https%3A%2F%2Fjenkins.deepak.science%2Fjob%2Fgitea-physics%2Fjob%2Fdeepdog%2Fjob%2Fmaster%2F&style=flat-square) ![Jenkins tests](https://img.shields.io/jenkins/tests?compact_message&jobUrl=https%3A%2F%2Fjenkins.deepak.science%2Fjob%2Fgitea-physics%2Fjob%2Fdeepdog%2Fjob%2Fmaster%2F&style=flat-square)
![Jenkins Coverage](https://img.shields.io/jenkins/coverage/cobertura?jobUrl=https%3A%2F%2Fjenkins.deepak.science%2Fjob%2Fgitea-physics%2Fjob%2Fdeepdog%2Fjob%2Fmaster%2F&style=flat-square) ![Jenkins Coverage](https://img.shields.io/jenkins/coverage/cobertura?jobUrl=https%3A%2F%2Fjenkins.deepak.science%2Fjob%2Fgitea-physics%2Fjob%2Fdeepdog%2Fjob%2Fmaster%2F&style=flat-square)
![Maintenance](https://img.shields.io/maintenance/yes/2023?style=flat-square) ![Maintenance](https://img.shields.io/maintenance/yes/2024?style=flat-square)
The DiPole DiaGnostic tool. The DiPole DiaGnostic tool.
@@ -13,6 +13,13 @@ The DiPole DiaGnostic tool.
`poetry install` to start locally `poetry install` to start locally
Commit using [Conventional Commits](https://www.conventionalcommits.org/en/v1.0.0/), and when commits are on master, release with `doo release`. Commit using [Conventional Commits](https://www.conventionalcommits.org/en/v1.0.0/), and when commits are on master, release with `just release`.
In general `just --list` has some of the useful stuff for figuring out what development tools there are.
Poetry as an installer is good, even better is using Nix (maybe with direnv to automatically pick up the `devShell` from `flake.nix`).
In either case `just` should handle actually calling things in a way that's agnostic to poetry as a runner or through nix.
### local scripts
`local_scripts` folder allows for scripts to be run using this code, but that probably isn't the most auditable for actual usage.
The API is still only something I'm using so there's no guarantees yet that it will be stable; overall semantic versioning should help with API breaks.

0
deepdog/cli/__init__.py Normal file
View File

View File

@@ -0,0 +1,5 @@
from deepdog.cli.probs.main import wrapped_main
__all__ = [
"wrapped_main",
]

51
deepdog/cli/probs/args.py Normal file
View File

@@ -0,0 +1,51 @@
import argparse
import os
def parse_args() -> argparse.Namespace:
def dir_path(path):
if os.path.isdir(path):
return path
else:
raise argparse.ArgumentTypeError(f"readable_dir:{path} is not a valid path")
parser = argparse.ArgumentParser(
"probs", description="Calculating probability from finished bayesrun"
)
parser.add_argument(
"--log_file",
type=str,
help="A filename for logging to, if not provided will only log to stderr",
default=None,
)
parser.add_argument(
"--bayesrun-directory",
"-d",
type=dir_path,
help="The directory to search for bayesrun files, defaulting to cwd if not passed",
default=".",
)
parser.add_argument(
"--indexify-json",
help="A json file with the indexify config for parsing job indexes. Will skip if not present",
default="",
)
parser.add_argument(
"--coalesced-keys",
type=str,
help="A comma separated list of strings over which to coalesce data. By default coalesce over all fields within model names, ignore file level names",
default="",
)
parser.add_argument(
"--uncoalesced-outfile",
type=str,
help="output filename for uncoalesced data. If not provided, will not be written",
default=None,
)
parser.add_argument(
"--coalesced-outfile",
type=str,
help="output filename for coalesced data. If not provided, will not be written",
default=None,
)
return parser.parse_args()

178
deepdog/cli/probs/dicts.py Normal file
View File

@@ -0,0 +1,178 @@
import typing
from deepdog.results import BayesrunOutput
import logging
import csv
import tqdm
_logger = logging.getLogger(__name__)
def build_model_dict(
bayes_outputs: typing.Sequence[BayesrunOutput],
) -> typing.Dict[
typing.Tuple, typing.Dict[typing.Tuple, typing.Dict["str", typing.Any]]
]:
"""
Maybe someday do something smarter with the coalescing and stuff but don't want to so i won't
"""
# assume that everything is well formatted and the keys are the same across entire list and initialise list of keys.
# model dict will contain a model_key: {calculation_dict} where each calculation_dict represents a single calculation for that model,
# the uncoalesced version, keyed by the specific file keys
model_dict: typing.Dict[
typing.Tuple, typing.Dict[typing.Tuple, typing.Dict["str", typing.Any]]
] = {}
_logger.info("building model dict")
for out in tqdm.tqdm(bayes_outputs, desc="reading outputs", leave=False):
for model_result in out.results:
model_key = tuple(v for v in model_result.parsed_model_keys.values())
if model_key not in model_dict:
model_dict[model_key] = {}
calculation_dict = model_dict[model_key]
calculation_key = tuple(v for v in out.data.values())
if calculation_key not in calculation_dict:
calculation_dict[calculation_key] = {
"_model_key_dict": model_result.parsed_model_keys,
"_calculation_key_dict": out.data,
"success": model_result.success,
"count": model_result.count,
}
else:
raise ValueError(
f"Got {calculation_key} twice for model_key {model_key}"
)
return model_dict
def write_uncoalesced_dict(
uncoalesced_output_filename: typing.Optional[str],
uncoalesced_model_dict: typing.Dict[
typing.Tuple, typing.Dict[typing.Tuple, typing.Dict["str", typing.Any]]
],
):
if uncoalesced_output_filename is None or uncoalesced_output_filename == "":
_logger.warning("Not provided a uncoalesced filename, not going to try")
return
first_value = next(iter(next(iter(uncoalesced_model_dict.values())).values()))
model_field_names = set(first_value["_model_key_dict"].keys())
calculation_field_names = set(first_value["_calculation_key_dict"].keys())
if not (set(model_field_names).isdisjoint(calculation_field_names)):
_logger.info(f"Detected model field names {model_field_names}")
_logger.info(f"Detected calculation field names {calculation_field_names}")
_logger.warning(
f"model field names {model_field_names} and calculation {calculation_field_names} have an overlap, which is possibly a problem"
)
collected_fieldnames = list(model_field_names)
collected_fieldnames.extend(calculation_field_names)
collected_fieldnames.extend(["success", "count"])
_logger.info(f"Full uncoalesced fieldnames are {collected_fieldnames}")
with open(uncoalesced_output_filename, "w", newline="") as uncoalesced_output_file:
writer = csv.DictWriter(
uncoalesced_output_file, fieldnames=collected_fieldnames
)
writer.writeheader()
for model_dict in uncoalesced_model_dict.values():
for calculation in model_dict.values():
row = calculation["_model_key_dict"].copy()
row.update(calculation["_calculation_key_dict"].copy())
row.update(
{
"success": calculation["success"],
"count": calculation["count"],
}
)
writer.writerow(row)
def coalesced_dict(
uncoalesced_model_dict: typing.Dict[
typing.Tuple, typing.Dict[typing.Tuple, typing.Dict["str", typing.Any]]
],
minimum_count: float = 0.1,
):
"""
pass in uncoalesced dict
the minimum_count field is what we use to make sure our probs are never zero
"""
coalesced_dict = {}
# we are already iterating so for no reason because performance really doesn't matter let's count the keys ourselves
num_keys = 0
# first pass coalesce
for model_key, model_dict in uncoalesced_model_dict.items():
num_keys += 1
for calculation in model_dict.values():
if model_key not in coalesced_dict:
coalesced_dict[model_key] = {
"_model_key_dict": calculation["_model_key_dict"].copy(),
"calculations_coalesced": 0,
"count": 0,
"success": 0,
}
sub_dict = coalesced_dict[model_key]
sub_dict["calculations_coalesced"] += 1
sub_dict["count"] += calculation["count"]
sub_dict["success"] += calculation["success"]
# second pass do probability calculation
prior = 1 / num_keys
_logger.info(f"Got {num_keys} model keys, so our prior will be {prior}")
total_weight = 0
for coalesced_model_dict in coalesced_dict.values():
model_weight = (
max(minimum_count, coalesced_model_dict["success"])
/ coalesced_model_dict["count"]
) * prior
total_weight += model_weight
total_prob = 0
for coalesced_model_dict in coalesced_dict.values():
model_weight = (
max(minimum_count, coalesced_model_dict["success"])
/ coalesced_model_dict["count"]
)
prob = model_weight * prior / total_weight
coalesced_model_dict["prob"] = prob
total_prob += prob
_logger.debug(
f"Got a total probability of {total_prob}, which should be close to 1 up to float/rounding error"
)
return coalesced_dict
def write_coalesced_dict(
coalesced_output_filename: typing.Optional[str],
coalesced_model_dict: typing.Dict[typing.Tuple, typing.Dict["str", typing.Any]],
):
if coalesced_output_filename is None or coalesced_output_filename == "":
_logger.warning("Not provided a uncoalesced filename, not going to try")
return
first_value = next(iter(coalesced_model_dict.values()))
model_field_names = set(first_value["_model_key_dict"].keys())
_logger.info(f"Detected model field names {model_field_names}")
collected_fieldnames = list(model_field_names)
collected_fieldnames.extend(["calculations_coalesced", "success", "count", "prob"])
with open(coalesced_output_filename, "w", newline="") as coalesced_output_file:
writer = csv.DictWriter(coalesced_output_file, fieldnames=collected_fieldnames)
writer.writeheader()
for model_dict in coalesced_model_dict.values():
row = model_dict["_model_key_dict"].copy()
row.update(
{
"calculations_coalesced": model_dict["calculations_coalesced"],
"success": model_dict["success"],
"count": model_dict["count"],
"prob": model_dict["prob"],
}
)
writer.writerow(row)

99
deepdog/cli/probs/main.py Normal file
View File

@@ -0,0 +1,99 @@
import logging
import argparse
import json
import deepdog.cli.probs.args
import deepdog.cli.probs.dicts
import deepdog.results
import deepdog.indexify
import pathlib
import tqdm
import tqdm.contrib.logging
_logger = logging.getLogger(__name__)
def set_up_logging(log_file: str):
log_pattern = "%(asctime)s | %(levelname)-7s | %(name)s:%(lineno)d | %(message)s"
if log_file is None:
handlers = [
logging.StreamHandler(),
]
else:
handlers = [logging.StreamHandler(), logging.FileHandler(log_file)]
logging.basicConfig(
level=logging.DEBUG,
format=log_pattern,
# it's okay to ignore this mypy error because who cares about logger handler types
handlers=handlers, # type: ignore
)
logging.captureWarnings(True)
def main(args: argparse.Namespace):
"""
Main function with passed in arguments and no additional logging setup in case we want to extract out later
"""
with tqdm.contrib.logging.logging_redirect_tqdm():
_logger.info(f"args: {args}")
try:
if args.coalesced_keys:
raise NotImplementedError(
"Currently not supporting coalesced keys, but maybe in future"
)
except AttributeError:
# we don't care if this is missing because we don't actually want it to be there
pass
indexifier = None
if args.indexify_json:
with open(args.indexify_json, "r") as indexify_json_file:
indexify_spec = json.load(indexify_json_file)
indexify_data = indexify_spec["indexes"]
if "seed_spec" in indexify_spec:
seed_spec = indexify_spec["seed_spec"]
indexify_data[seed_spec["field_name"]] = list(
range(seed_spec["num_seeds"])
)
# _logger.debug(f"Indexifier data looks like {indexify_data}")
indexifier = deepdog.indexify.Indexifier(indexify_data)
bayes_dir = pathlib.Path(args.bayesrun_directory)
out_files = [f for f in bayes_dir.iterdir() if f.name.endswith("bayesrun.csv")]
_logger.info(
f"Reading {len(out_files)} bayesrun.csv files in directory {args.bayesrun_directory}"
)
# _logger.info(out_files)
parsed_output_files = [
deepdog.results.read_output_file(f, indexifier)
for f in tqdm.tqdm(out_files, desc="reading files", leave=False)
]
_logger.info("building uncoalesced dict")
uncoalesced_dict = deepdog.cli.probs.dicts.build_model_dict(parsed_output_files)
if "uncoalesced_outfile" in args and args.uncoalesced_outfile:
deepdog.cli.probs.dicts.write_uncoalesced_dict(
args.uncoalesced_outfile, uncoalesced_dict
)
else:
_logger.info("Skipping writing uncoalesced")
_logger.info("building coalesced dict")
coalesced = deepdog.cli.probs.dicts.coalesced_dict(uncoalesced_dict)
if "coalesced_outfile" in args and args.coalesced_outfile:
deepdog.cli.probs.dicts.write_coalesced_dict(
args.coalesced_outfile, coalesced
)
else:
_logger.info("Skipping writing coalesced")
def wrapped_main():
args = deepdog.cli.probs.args.parse_args()
set_up_logging(args.log_file)
main(args)

View File

@@ -1,22 +1,28 @@
import csv
import pdme.model import pdme.model
import pdme.measurement import pdme.measurement
import pdme.measurement.input_types import pdme.measurement.input_types
import pdme.subspace_simulation import pdme.subspace_simulation
from typing import Tuple, Dict, NewType, Any import datetime
from typing import Tuple, Dict, NewType, Any, Sequence
from dataclasses import dataclass from dataclasses import dataclass
import logging import logging
import numpy import numpy
import numpy.random import numpy.random
import pdme.util.fast_v_calc import pdme.util.fast_v_calc
import multiprocessing
_logger = logging.getLogger(__name__) _logger = logging.getLogger(__name__)
ANTI_ZERO_SUCCESS_THRES = 0.1
@dataclass @dataclass
class DirectMonteCarloResult: class DirectMonteCarloResult:
successes: int successes: int
monte_carlo_count: int monte_carlo_count: int
likelihood: float likelihood: float
model_name: str
@dataclass @dataclass
@@ -28,6 +34,10 @@ class DirectMonteCarloConfig:
monte_carlo_seed: int = 1234 monte_carlo_seed: int = 1234
write_successes_to_file: bool = False write_successes_to_file: bool = False
tag: str = "" tag: str = ""
cap_core_count: int = 0 # 0 means cap at num cores - 1
chunk_size: int = 50
write_bayesrun_file = True
# chunk size of some kind
# Aliasing dict as a generic data container # Aliasing dict as a generic data container
@@ -51,8 +61,8 @@ class DirectMonteCarloRun:
Parameters Parameters
---------- ----------
model_name_pair : Sequence[Tuple(str, pdme.model.DipoleModel)] model_name_pairs : Sequence[Tuple(str, pdme.model.DipoleModel)]
The model to evaluate, with name. The models to evaluate, with names
measurements: Sequence[pdme.measurement.DotRangeMeasurement] measurements: Sequence[pdme.measurement.DotRangeMeasurement]
The measurements as dot ranges to use as the bounds for the Monte Carlo calculation. The measurements as dot ranges to use as the bounds for the Monte Carlo calculation.
@@ -78,11 +88,11 @@ class DirectMonteCarloRun:
def __init__( def __init__(
self, self,
model_name_pair: Tuple[str, pdme.model.DipoleModel], model_name_pairs: Sequence[Tuple[str, pdme.model.DipoleModel]],
filter: DirectMonteCarloFilter, filter: DirectMonteCarloFilter,
config: DirectMonteCarloConfig, config: DirectMonteCarloConfig,
): ):
self.model_name, self.model = model_name_pair self.model_name_pairs = model_name_pairs
# self.measurements = measurements # self.measurements = measurements
# self.dot_inputs = [(measure.r, measure.f) for measure in self.measurements] # self.dot_inputs = [(measure.r, measure.f) for measure in self.measurements]
@@ -100,10 +110,16 @@ class DirectMonteCarloRun:
# self.measurements # self.measurements
# ) # )
def _single_run(self, seed) -> numpy.ndarray: def _single_run(
self, model_name_pair: Tuple[str, pdme.model.DipoleModel], seed
) -> numpy.ndarray:
rng = numpy.random.default_rng(seed) rng = numpy.random.default_rng(seed)
sample_dipoles = self.model.get_monte_carlo_dipole_inputs( _, model = model_name_pair
# don't log here it's madness
# _logger.info(f"Executing for model {model_name}")
sample_dipoles = model.get_monte_carlo_dipole_inputs(
self.config.monte_carlo_count_per_cycle, -1, rng self.config.monte_carlo_count_per_cycle, -1, rng
) )
@@ -123,52 +139,188 @@ class DirectMonteCarloRun:
# ] # ]
# return current_sample # return current_sample
def execute(self) -> DirectMonteCarloResult: def _wrapped_single_run(self, args: Tuple):
step_count = 0 """
total_success = 0 single run wrapped up for multiprocessing call.
total_count = 0
takes in a tuple of arguments corresponding to
(model_name_pair, seed)
"""
# here's where we do our work
model_name_pair, seed = args
cycle_success_configs = self._single_run(model_name_pair, seed)
cycle_success_count = len(cycle_success_configs)
return cycle_success_count
def execute_no_multiprocessing(self) -> Sequence[DirectMonteCarloResult]:
count_per_step = ( count_per_step = (
self.config.monte_carlo_count_per_cycle * self.config.monte_carlo_cycles self.config.monte_carlo_count_per_cycle * self.config.monte_carlo_cycles
) )
seed_sequence = numpy.random.SeedSequence(self.config.monte_carlo_seed) seed_sequence = numpy.random.SeedSequence(self.config.monte_carlo_seed)
while (step_count < self.config.max_monte_carlo_cycles_steps) and (
total_success < self.config.target_success
):
_logger.debug(f"Executing step {step_count}")
for cycle_i, seed in enumerate(
seed_sequence.spawn(self.config.monte_carlo_cycles)
):
cycle_success_configs = self._single_run(seed)
cycle_success_count = len(cycle_success_configs)
if cycle_success_count > 0:
_logger.debug(
f"For cycle {cycle_i} received {cycle_success_count} successes"
)
_logger.debug(cycle_success_configs)
if self.config.write_successes_to_file:
sorted_by_freq = numpy.array(
[
pdme.subspace_simulation.sort_array_of_dipoles_by_frequency(
dipole_config
)
for dipole_config in cycle_success_configs
]
)
dipole_count = numpy.array(cycle_success_configs).shape[1]
for n in range(dipole_count):
numpy.savetxt(
f"{self.config.tag}_{step_count}_{cycle_i}_dipole_{n}.csv",
sorted_by_freq[:, n],
delimiter=",",
)
total_success += cycle_success_count
_logger.debug(f"At end of step {step_count} have {total_success} successes")
step_count += 1
total_count += count_per_step
return DirectMonteCarloResult( # core count etc. logic here
successes=total_success,
monte_carlo_count=total_count, results = []
likelihood=total_success / total_count, for model_name_pair in self.model_name_pairs:
step_count = 0
total_success = 0
total_count = 0
_logger.info(f"Working on model {model_name_pair[0]}")
# This is probably where multiprocessing logic should go
while (step_count < self.config.max_monte_carlo_cycles_steps) and (
total_success < self.config.target_success
):
_logger.debug(f"Executing step {step_count}")
for cycle_i, seed in enumerate(
seed_sequence.spawn(self.config.monte_carlo_cycles)
):
# here's where we do our work
cycle_success_configs = self._single_run(model_name_pair, seed)
cycle_success_count = len(cycle_success_configs)
if cycle_success_count > 0:
_logger.debug(
f"For cycle {cycle_i} received {cycle_success_count} successes"
)
# _logger.debug(cycle_success_configs)
if self.config.write_successes_to_file:
sorted_by_freq = numpy.array(
[
pdme.subspace_simulation.sort_array_of_dipoles_by_frequency(
dipole_config
)
for dipole_config in cycle_success_configs
]
)
dipole_count = numpy.array(cycle_success_configs).shape[1]
for n in range(dipole_count):
numpy.savetxt(
f"{self.config.tag}_{step_count}_{cycle_i}_dipole_{n}.csv",
sorted_by_freq[:, n],
delimiter=",",
)
total_success += cycle_success_count
_logger.debug(
f"At end of step {step_count} have {total_success} successes"
)
step_count += 1
total_count += count_per_step
results.append(
DirectMonteCarloResult(
successes=total_success,
monte_carlo_count=total_count,
likelihood=total_success / total_count,
model_name=model_name_pair[0],
)
)
return results
def execute(self) -> Sequence[DirectMonteCarloResult]:
# set starting execution timestamp
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
count_per_step = (
self.config.monte_carlo_count_per_cycle * self.config.monte_carlo_cycles
) )
seed_sequence = numpy.random.SeedSequence(self.config.monte_carlo_seed)
# core count etc. logic here
core_count = multiprocessing.cpu_count() - 1 or 1
if (self.config.cap_core_count >= 1) and (
self.config.cap_core_count < core_count
):
core_count = self.config.cap_core_count
_logger.info(f"Using {core_count} cores")
results = []
with multiprocessing.Pool(core_count) as pool:
for model_name_pair in self.model_name_pairs:
_logger.info(f"Working on model {model_name_pair[0]}")
# This is probably where multiprocessing logic should go
step_count = 0
total_success = 0
total_count = 0
while (step_count < self.config.max_monte_carlo_cycles_steps) and (
total_success < self.config.target_success
):
step_count += 1
_logger.debug(f"Executing step {step_count}")
seeds = seed_sequence.spawn(self.config.monte_carlo_cycles)
pool_results = sum(
pool.imap_unordered(
self._wrapped_single_run,
[(model_name_pair, seed) for seed in seeds],
self.config.chunk_size,
)
)
_logger.debug(f"Pool results: {pool_results}")
total_success += pool_results
total_count += count_per_step
_logger.debug(
f"At end of step {step_count} have {total_success} successes"
)
results.append(
DirectMonteCarloResult(
successes=total_success,
monte_carlo_count=total_count,
likelihood=total_success / total_count,
model_name=model_name_pair[0],
)
)
if self.config.write_bayesrun_file:
filename = (
f"{timestamp}-{self.config.tag}.realdata.fast_filter.bayesrun.csv"
)
_logger.info(f"Going to write to file [{filename}]")
# row: Dict[str, Union[int, float, str]] = {}
row = {}
num_models = len(self.model_name_pairs)
success_weight = sum(
[
(
max(ANTI_ZERO_SUCCESS_THRES, res.successes)
/ res.monte_carlo_count
)
/ num_models
for res in results
]
)
for res in results:
row.update(
{
f"{res.model_name}_success": res.successes,
f"{res.model_name}_count": res.monte_carlo_count,
f"{res.model_name}_prob": (
max(ANTI_ZERO_SUCCESS_THRES, res.successes)
/ res.monte_carlo_count
)
/ (num_models * success_weight),
}
)
_logger.info(f"Writing row {row}")
fieldnames = list(row.keys())
with open(filename, "w", newline="") as outfile:
writer = csv.DictWriter(outfile, fieldnames=fieldnames, dialect="unix")
writer.writeheader()
writer.writerow(row)
return results

View File

@@ -39,6 +39,135 @@ class SingleDotPotentialFilter(DirectMonteCarloFilter):
return current_sample return current_sample
class SingleDotSpinQubitFrequencyFilter(DirectMonteCarloFilter):
def __init__(self, measurements: Sequence[pdme.measurement.DotRangeMeasurement]):
self.measurements = measurements
self.dot_inputs = [(measure.r, measure.f) for measure in self.measurements]
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
self.dot_inputs
)
(
self.lows,
self.highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
self.measurements
)
# oh no not this again
def fast_s_spin_qubit_tarucha_apsd_dipoleses(
self, dot_inputs: numpy.ndarray, dipoleses: numpy.ndarray
) -> numpy.ndarray:
"""
No error correction here baby.
"""
# We're going to annotate the indices on this class.
# Let's define some indices:
# A -> index of dipoleses configurations
# j -> within a particular configuration, indexes dipole j
# measurement_index -> if we have 100 frequencies for example, indexes which one of them it is
# If we need to use numbers, let's use A -> 2, j -> 10, measurement_index -> 9 for consistency with
# my other notes
# axes are [dipole_config_idx A, dipole_idx j, {px, py, pz}3]
ps = dipoleses[:, :, 0:3]
# axes are [dipole_config_idx A, dipole_idx j, {sx, sy, sz}3]
ss = dipoleses[:, :, 3:6]
# axes are [dipole_config_idx A, dipole_idx j, w], last axis is just 1
ws = dipoleses[:, :, 6]
# dot_index is either 0 or 1 for dot1 or dot2
# hopefully this adhoc grammar is making sense, with the explicit labelling of the values of the last axis in cartesian space
# axes are [measurement_idx, {dot_index}, {rx, ry, rz}] where the inner {dot_index} is gone
# [measurement_idx, cartesian3]
rs = dot_inputs[:, 0:3]
# axes are [measurement_idx]
fs = dot_inputs[:, 3]
# first operation!
# r1s has shape [measurement_idx, rxs]
# None inserts an extra axis so the r1s[:, None] has shape
# [measurement_idx, 1]([rxs]) with the last rxs hidden
#
# ss has shape [ A, j, {sx, sy, sz}3], so second term has shape [A, 1, j]([sxs])
# these broadcast from right to left
# [ measurement_idx, 1, rxs]
# [A, 1, j, sxs]
# resulting in [A, measurement_idx, j, cart3] sxs rxs are both cart3
diffses = rs[:, None] - ss[:, None, :]
# norms takes out axis 3, the last one, giving [A, measurement_idx, j]
norms = numpy.linalg.norm(diffses, axis=3)
# _logger.info(f"norms1: {norms1}")
# _logger.info(f"norms1 shape: {norms1.shape}")
#
# diffses1 (A, measurement_idx, j, xs)
# ps: (A, j, px)
# result is (A, measurement_idx, j)
# intermediate_dot_prod = numpy.einsum("abcd,acd->abc", diffses1, ps)
# _logger.info(f"dot product shape: {intermediate_dot_prod.shape}")
# transpose makes it (j, measurement_idx, A)
# transp_intermediate_dot_prod = numpy.transpose(numpy.einsum("abcd,acd->abc", diffses1, ps) / (norms1**3))
# transpose of diffses has shape (xs, j, measurement_idx, A)
# numpy.transpose(diffses1)
# _logger.info(f"dot product shape: {transp_intermediate_dot_prod.shape}")
# inner transpose is (j, measurement_idx, A) * (xs, j, measurement_idx, A)
# next transpose puts it back to (A, measurement_idx, j, xs)
# p_dot_r_times_r_term = 3 * numpy.transpose(numpy.transpose(numpy.einsum("abcd,acd->abc", diffses1, ps) / (norms1**3)) * numpy.transpose(diffses1))
# _logger.info(f"p_dot_r_times_r_term: {p_dot_r_times_r_term.shape}")
# only x axis puts us at (A, measurement_idx, j)
# p_dot_r_times_r_term_x_only = p_dot_r_times_r_term[:, :, :, 0]
# _logger.info(f"p_dot_r_times_r_term_x_only.shape: {p_dot_r_times_r_term_x_only.shape}")
# now to complete the numerator we subtract the ps, which are (A, j, px):
# slicing off the end gives us (A, j), so we newaxis to get (A, 1, j)
# _logger.info(ps[:, numpy.newaxis, :, 0].shape)
alphses = (
(
3
* numpy.transpose(
numpy.transpose(
numpy.einsum("abcd,acd->abc", diffses, ps) / (norms**2)
)
* numpy.transpose(diffses)
)[:, :, :, 0]
)
- ps[:, numpy.newaxis, :, 0]
) / (norms**3)
bses = (
2
* numpy.pi
* ws[:, None, :]
/ ((2 * numpy.pi * fs[:, None]) ** 2 + 4 * ws[:, None, :] ** 2)
)
return numpy.einsum("...j->...", alphses * alphses * bses)
def filter_samples(self, samples: ndarray) -> ndarray:
current_sample = samples
for di, low, high in zip(self.dot_inputs_array, self.lows, self.highs):
if len(current_sample) < 1:
break
vals = self.fast_s_spin_qubit_tarucha_apsd_dipoleses(
numpy.array([di]), current_sample
)
# _logger.info(vals)
current_sample = current_sample[
numpy.all((vals > low) & (vals < high), axis=1)
]
# _logger.info(f"leaving with {len(current_sample)}")
return current_sample
class DoubleDotSpinQubitFrequencyFilter(DirectMonteCarloFilter): class DoubleDotSpinQubitFrequencyFilter(DirectMonteCarloFilter):
def __init__( def __init__(
self, self,
@@ -59,59 +188,6 @@ class DoubleDotSpinQubitFrequencyFilter(DirectMonteCarloFilter):
self.pair_phase_measurements self.pair_phase_measurements
) )
def fast_s_spin_qubit_tarucha_nonlocal_dipoleses(
self, dot_pair_inputs: numpy.ndarray, dipoleses: numpy.ndarray
) -> numpy.ndarray:
"""
No error correction here baby.
"""
ps = dipoleses[:, :, 0:3]
ss = dipoleses[:, :, 3:6]
ws = dipoleses[:, :, 6]
r1s = dot_pair_inputs[:, 0, 0:3]
r2s = dot_pair_inputs[:, 1, 0:3]
f1s = dot_pair_inputs[:, 0, 3]
# Don't actually need this
# f2s = dot_pair_inputs[:, 1, 3]
diffses1 = r1s[:, None] - ss[:, None, :]
diffses2 = r2s[:, None] - ss[:, None, :]
norms1 = numpy.linalg.norm(diffses1, axis=3)
norms2 = numpy.linalg.norm(diffses2, axis=3)
alphses1 = (
(
3
* numpy.transpose(
numpy.transpose(
numpy.einsum("abcd,acd->abc", diffses1, ps) / (norms1**2)
)
* numpy.transpose(diffses1)
)[:, :, :, 0]
)
- ps[:, :, 0, numpy.newaxis]
) / (norms1**3)
alphses2 = (
(
3
* numpy.transpose(
numpy.transpose(
numpy.einsum("abcd,acd->abc", diffses2, ps) / (norms2**2)
)
* numpy.transpose(diffses2)
)[:, :, :, 0]
)
- ps[:, :, 0, numpy.newaxis]
) / (norms2**3)
bses = (1 / numpy.pi) * (
ws[:, None, :] / (f1s[:, None] ** 2 + ws[:, None, :] ** 2)
)
return numpy.einsum("...j->...", alphses1 * alphses2 * bses)
def filter_samples(self, samples: ndarray) -> ndarray: def filter_samples(self, samples: ndarray) -> ndarray:
current_sample = samples current_sample = samples
@@ -121,16 +197,8 @@ class DoubleDotSpinQubitFrequencyFilter(DirectMonteCarloFilter):
if len(current_sample) < 1: if len(current_sample) < 1:
break break
###
# This should be abstracted out, but we're going to dump it here for time pressure's sake
###
# vals = pdme.util.fast_nonlocal_spectrum.signarg(
# pdme.util.fast_nonlocal_spectrum.fast_s_nonlocal_dipoleses(
# numpy.array([pi]), current_sample
# )
#
vals = pdme.util.fast_nonlocal_spectrum.signarg( vals = pdme.util.fast_nonlocal_spectrum.signarg(
self.fast_s_spin_qubit_tarucha_nonlocal_dipoleses( pdme.util.fast_nonlocal_spectrum.fast_s_spin_qubit_tarucha_nonlocal_dipoleses(
numpy.array([pi]), current_sample numpy.array([pi]), current_sample
) )
) )

View File

@@ -0,0 +1,58 @@
"""
Probably should just include a way to handle the indexify function I reuse so much.
All about breaking an integer into a tuple of values from lists, which is useful because of how we do CHTC runs.
"""
import itertools
import typing
import logging
import math
_logger = logging.getLogger(__name__)
# from https://stackoverflow.com/questions/5228158/cartesian-product-of-a-dictionary-of-lists
def _dict_product(dicts):
"""
>>> list(dict_product(dict(number=[1,2], character='ab')))
[{'character': 'a', 'number': 1},
{'character': 'a', 'number': 2},
{'character': 'b', 'number': 1},
{'character': 'b', 'number': 2}]
"""
return list(dict(zip(dicts.keys(), x)) for x in itertools.product(*dicts.values()))
class Indexifier:
"""
The order of keys is very important, but collections.OrderedDict is no longer needed in python 3.7.
I think it's okay to rely on that.
"""
def __init__(self, list_dict: typing.Dict[str, typing.Sequence]):
self.dict = list_dict
def indexify(self, n: int) -> typing.Dict[str, typing.Any]:
product_dict = _dict_product(self.dict)
return product_dict[n]
def _indexify_indices(self, n: int) -> typing.Sequence[int]:
"""
legacy indexify from old scripts, copypast.
could be used like
>>> ret = {}
>>> for k, i in zip(self.dict.keys(), self._indexify_indices):
>>> ret[k] = self.dict[k][i]
>>> return ret
"""
weights = [len(v) for v in self.dict.values()]
N = math.prod(weights)
curr_n = n
curr_N = N
out = []
for w in weights[:-1]:
# print(f"current: {curr_N}, {curr_n}, {curr_n // w}")
curr_N = curr_N // w # should be int division anyway
out.append(curr_n // curr_N)
curr_n = curr_n % curr_N
return out

View File

@@ -112,59 +112,6 @@ def get_a_result_fast_filter_tarucha_spin_qubit_pair_phase_only(input) -> int:
seed, seed,
) = input ) = input
def fast_s_spin_qubit_tarucha_nonlocal_dipoleses(
dot_pair_inputs: numpy.ndarray, dipoleses: numpy.ndarray
) -> numpy.ndarray:
"""
No error correction here baby.
"""
ps = dipoleses[:, :, 0:3]
ss = dipoleses[:, :, 3:6]
ws = dipoleses[:, :, 6]
r1s = dot_pair_inputs[:, 0, 0:3]
r2s = dot_pair_inputs[:, 1, 0:3]
f1s = dot_pair_inputs[:, 0, 3]
# don't actually need, because we're assuming they're the same frequencies across the pair
# f2s = dot_pair_inputs[:, 1, 3]
diffses1 = r1s[:, None] - ss[:, None, :]
diffses2 = r2s[:, None] - ss[:, None, :]
norms1 = numpy.linalg.norm(diffses1, axis=3)
norms2 = numpy.linalg.norm(diffses2, axis=3)
alphses1 = (
(
3
* numpy.transpose(
numpy.transpose(
numpy.einsum("abcd,acd->abc", diffses1, ps) / (norms1**2)
)
* numpy.transpose(diffses1)
)[:, :, :, 0]
)
- ps[:, :, 0, numpy.newaxis]
) / (norms1**3)
alphses2 = (
(
3
* numpy.transpose(
numpy.transpose(
numpy.einsum("abcd,acd->abc", diffses2, ps) / (norms2**2)
)
* numpy.transpose(diffses2)
)[:, :, :, 0]
)
- ps[:, :, 0, numpy.newaxis]
) / (norms2**3)
bses = (1 / numpy.pi) * (
ws[:, None, :] / (f1s[:, None] ** 2 + ws[:, None, :] ** 2)
)
return numpy.einsum("...j->...", alphses1 * alphses2 * bses)
rng = numpy.random.default_rng(seed) rng = numpy.random.default_rng(seed)
# TODO: A long term refactor is to pull the frequency stuff out from here. The None stands for max_frequency, which is unneeded in the actually useful models. # TODO: A long term refactor is to pull the frequency stuff out from here. The None stands for max_frequency, which is unneeded in the actually useful models.
sample_dipoles = model.get_monte_carlo_dipole_inputs( sample_dipoles = model.get_monte_carlo_dipole_inputs(
@@ -186,7 +133,7 @@ def get_a_result_fast_filter_tarucha_spin_qubit_pair_phase_only(input) -> int:
# ) # )
# #
vals = pdme.util.fast_nonlocal_spectrum.signarg( vals = pdme.util.fast_nonlocal_spectrum.signarg(
fast_s_spin_qubit_tarucha_nonlocal_dipoleses( pdme.util.fast_nonlocal_spectrum.fast_s_spin_qubit_tarucha_nonlocal_dipoleses(
numpy.array([pi]), current_sample numpy.array([pi]), current_sample
) )
) )

170
deepdog/results/__init__.py Normal file
View File

@@ -0,0 +1,170 @@
import dataclasses
import re
import typing
import logging
import deepdog.indexify
import pathlib
import csv
_logger = logging.getLogger(__name__)
FILENAME_REGEX = r"(?P<timestamp>\d{8}-\d{6})-(?P<filename_slug>.*)\.realdata\.fast_filter\.bayesrun\.csv"
MODEL_REGEXES = [
r"geom_(?P<xmin>-?\d+)_(?P<xmax>-?\d+)_(?P<ymin>-?\d+)_(?P<ymax>-?\d+)_(?P<zmin>-?\d+)_(?P<zmax>-?\d+)-orientation_(?P<orientation>free|fixedxy|fixedz)-dipole_count_(?P<avg_filled>\d+)_(?P<field_name>\w*)"
]
FILE_SLUG_REGEXES = [
r"mock_tarucha-(?P<job_index>\d+)",
r"(?:(?P<mock>mock)_)?tarucha(?:_(?P<tarucha_run_id>\d+))?-(?P<job_index>\d+)",
]
@dataclasses.dataclass
class BayesrunOutputFilename:
timestamp: str
filename_slug: str
path: pathlib.Path
@dataclasses.dataclass
class BayesrunColumnParsed:
"""
class for parsing a bayesrun while pulling certain special fields out
"""
def __init__(self, groupdict: typing.Dict[str, str]):
self.column_field = groupdict["field_name"]
self.model_field_dict = {
k: v for k, v in groupdict.items() if k != "field_name"
}
def __str__(self):
return f"BayesrunColumnParsed[{self.column_field}: {self.model_field_dict}]"
@dataclasses.dataclass
class BayesrunModelResult:
parsed_model_keys: typing.Dict[str, str]
success: int
count: int
@dataclasses.dataclass
class BayesrunOutput:
filename: BayesrunOutputFilename
data: typing.Dict["str", typing.Any]
results: typing.Sequence[BayesrunModelResult]
def _batch_iterable_into_chunks(iterable, n=1):
"""
utility for batching bayesrun files where columns appear in threes
"""
for ndx in range(0, len(iterable), n):
yield iterable[ndx : min(ndx + n, len(iterable))]
def _parse_bayesrun_column(
column: str,
) -> typing.Optional[BayesrunColumnParsed]:
"""
Tries one by one all of a predefined list of regexes that I might have used in the past.
Returns the groupdict for the first match, or None if no match found.
"""
for pattern in MODEL_REGEXES:
match = re.match(pattern, column)
if match:
return BayesrunColumnParsed(match.groupdict())
else:
return None
def _parse_bayesrun_row(
row: typing.Dict[str, str],
) -> typing.Sequence[BayesrunModelResult]:
results = []
batched_keys = _batch_iterable_into_chunks(list(row.keys()), 3)
for model_keys in batched_keys:
parsed = [_parse_bayesrun_column(column) for column in model_keys]
values = [row[column] for column in model_keys]
if parsed[0] is None:
raise ValueError(f"no viable success row found for keys {model_keys}")
if parsed[1] is None:
raise ValueError(f"no viable count row found for keys {model_keys}")
if parsed[0].column_field != "success":
raise ValueError(f"The column {model_keys[0]} is not a success field")
if parsed[1].column_field != "count":
raise ValueError(f"The column {model_keys[1]} is not a count field")
parsed_keys = parsed[0].model_field_dict
success = int(values[0])
count = int(values[1])
results.append(
BayesrunModelResult(
parsed_model_keys=parsed_keys,
success=success,
count=count,
)
)
return results
def _parse_output_filename(file: pathlib.Path) -> BayesrunOutputFilename:
filename = file.name
match = re.match(FILENAME_REGEX, filename)
if not match:
raise ValueError(f"{filename} was not a valid bayesrun output")
groups = match.groupdict()
return BayesrunOutputFilename(
timestamp=groups["timestamp"], filename_slug=groups["filename_slug"], path=file
)
def _parse_file_slug(slug: str) -> typing.Optional[typing.Dict[str, str]]:
for pattern in FILE_SLUG_REGEXES:
match = re.match(pattern, slug)
if match:
return match.groupdict()
else:
return None
def read_output_file(
file: pathlib.Path, indexifier: typing.Optional[deepdog.indexify.Indexifier]
) -> BayesrunOutput:
parsed_filename = tag = _parse_output_filename(file)
out = BayesrunOutput(filename=parsed_filename, data={}, results=[])
out.data.update(dataclasses.asdict(tag))
parsed_tag = _parse_file_slug(parsed_filename.filename_slug)
if parsed_tag is None:
_logger.warning(
f"Could not parse {tag} against any matching regexes. Going to skip tag parsing"
)
else:
out.data.update(parsed_tag)
if indexifier is not None:
try:
job_index = parsed_tag["job_index"]
indexified = indexifier.indexify(int(job_index))
out.data.update(indexified)
except KeyError:
# This isn't really that important of an error, apart from the warning
_logger.warning(
f"Parsed tag to {parsed_tag}, and attempted to indexify but no job_index key was found. skipping and moving on"
)
with file.open() as input_file:
reader = csv.DictReader(input_file)
rows = [r for r in reader]
if len(rows) == 1:
row = rows[0]
else:
raise ValueError(f"Confused about having multiple rows in {file.name}")
results = _parse_bayesrun_row(row)
out.results = results
return out

View File

@@ -36,6 +36,7 @@
self.packages.${system}.deepdogEnv self.packages.${system}.deepdogEnv
self.packages.${system}.deepdogApp self.packages.${system}.deepdogApp
pkgs.just pkgs.just
pkgs.nodejs
]; ];
shellHook = '' shellHook = ''
export DO_NIX_CUSTOM=1 export DO_NIX_CUSTOM=1

View File

@@ -46,9 +46,15 @@ fmt:
find deepdog -type f -name "*.py" -exec sed -i -e 's/ /\t/g' {} \; find deepdog -type f -name "*.py" -exec sed -i -e 's/ /\t/g' {} \;
find tests -type f -name "*.py" -exec sed -i -e 's/ /\t/g' {} \; find tests -type f -name "*.py" -exec sed -i -e 's/ /\t/g' {} \;
# release the app, checking that our working tree is clean and ready for release # release the app, checking that our working tree is clean and ready for release, optionally takes target version
release: release version="":
./scripts/release.sh #!/usr/bin/env bash
set -euxo pipefail
if [[ -n "{{version}}" ]]; then
./scripts/release.sh {{version}}
else
./scripts/release.sh
fi
htmlcov: htmlcov:
poetry run pytest --cov-report=html poetry run pytest --cov-report=html

327
poetry.lock generated
View File

@@ -1,5 +1,20 @@
# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand. # This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand.
[[package]]
name = "backports-tarfile"
version = "1.1.1"
description = "Backport of CPython tarfile module"
optional = false
python-versions = ">=3.8"
files = [
{file = "backports.tarfile-1.1.1-py3-none-any.whl", hash = "sha256:73e0179647803d3726d82e76089d01d8549ceca9bace469953fcb4d97cf2d417"},
{file = "backports_tarfile-1.1.1.tar.gz", hash = "sha256:9c2ef9696cb73374f7164e17fc761389393ca76777036f5aad42e8b93fcd8009"},
]
[package.extras]
docs = ["furo", "jaraco.packaging (>=9.3)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"]
testing = ["jaraco.test", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)"]
[[package]] [[package]]
name = "black" name = "black"
version = "22.12.0" version = "22.12.0"
@@ -250,63 +265,63 @@ files = [
[[package]] [[package]]
name = "coverage" name = "coverage"
version = "7.4.3" version = "7.5.0"
description = "Code coverage measurement for Python" description = "Code coverage measurement for Python"
optional = false optional = false
python-versions = ">=3.8" python-versions = ">=3.8"
files = [ files = [
{file = "coverage-7.4.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8580b827d4746d47294c0e0b92854c85a92c2227927433998f0d3320ae8a71b6"}, {file = "coverage-7.5.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:432949a32c3e3f820af808db1833d6d1631664d53dd3ce487aa25d574e18ad1c"},
{file = "coverage-7.4.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:718187eeb9849fc6cc23e0d9b092bc2348821c5e1a901c9f8975df0bc785bfd4"}, {file = "coverage-7.5.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2bd7065249703cbeb6d4ce679c734bef0ee69baa7bff9724361ada04a15b7e3b"},
{file = "coverage-7.4.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:767b35c3a246bcb55b8044fd3a43b8cd553dd1f9f2c1eeb87a302b1f8daa0524"}, {file = "coverage-7.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bbfe6389c5522b99768a93d89aca52ef92310a96b99782973b9d11e80511f932"},
{file = "coverage-7.4.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ae7f19afe0cce50039e2c782bff379c7e347cba335429678450b8fe81c4ef96d"}, {file = "coverage-7.5.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:39793731182c4be939b4be0cdecde074b833f6171313cf53481f869937129ed3"},
{file = "coverage-7.4.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba3a8aaed13770e970b3df46980cb068d1c24af1a1968b7818b69af8c4347efb"}, {file = "coverage-7.5.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85a5dbe1ba1bf38d6c63b6d2c42132d45cbee6d9f0c51b52c59aa4afba057517"},
{file = "coverage-7.4.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:ee866acc0861caebb4f2ab79f0b94dbfbdbfadc19f82e6e9c93930f74e11d7a0"}, {file = "coverage-7.5.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:357754dcdfd811462a725e7501a9b4556388e8ecf66e79df6f4b988fa3d0b39a"},
{file = "coverage-7.4.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:506edb1dd49e13a2d4cac6a5173317b82a23c9d6e8df63efb4f0380de0fbccbc"}, {file = "coverage-7.5.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:a81eb64feded34f40c8986869a2f764f0fe2db58c0530d3a4afbcde50f314880"},
{file = "coverage-7.4.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fd6545d97c98a192c5ac995d21c894b581f1fd14cf389be90724d21808b657e2"}, {file = "coverage-7.5.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:51431d0abbed3a868e967f8257c5faf283d41ec882f58413cf295a389bb22e58"},
{file = "coverage-7.4.3-cp310-cp310-win32.whl", hash = "sha256:f6a09b360d67e589236a44f0c39218a8efba2593b6abdccc300a8862cffc2f94"}, {file = "coverage-7.5.0-cp310-cp310-win32.whl", hash = "sha256:f609ebcb0242d84b7adeee2b06c11a2ddaec5464d21888b2c8255f5fd6a98ae4"},
{file = "coverage-7.4.3-cp310-cp310-win_amd64.whl", hash = "sha256:18d90523ce7553dd0b7e23cbb28865db23cddfd683a38fb224115f7826de78d0"}, {file = "coverage-7.5.0-cp310-cp310-win_amd64.whl", hash = "sha256:6782cd6216fab5a83216cc39f13ebe30adfac2fa72688c5a4d8d180cd52e8f6a"},
{file = "coverage-7.4.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cbbe5e739d45a52f3200a771c6d2c7acf89eb2524890a4a3aa1a7fa0695d2a47"}, {file = "coverage-7.5.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:e768d870801f68c74c2b669fc909839660180c366501d4cc4b87efd6b0eee375"},
{file = "coverage-7.4.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:489763b2d037b164846ebac0cbd368b8a4ca56385c4090807ff9fad817de4113"}, {file = "coverage-7.5.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:84921b10aeb2dd453247fd10de22907984eaf80901b578a5cf0bb1e279a587cb"},
{file = "coverage-7.4.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:451f433ad901b3bb00184d83fd83d135fb682d780b38af7944c9faeecb1e0bfe"}, {file = "coverage-7.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:710c62b6e35a9a766b99b15cdc56d5aeda0914edae8bb467e9c355f75d14ee95"},
{file = "coverage-7.4.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fcc66e222cf4c719fe7722a403888b1f5e1682d1679bd780e2b26c18bb648cdc"}, {file = "coverage-7.5.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c379cdd3efc0658e652a14112d51a7668f6bfca7445c5a10dee7eabecabba19d"},
{file = "coverage-7.4.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b3ec74cfef2d985e145baae90d9b1b32f85e1741b04cd967aaf9cfa84c1334f3"}, {file = "coverage-7.5.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fea9d3ca80bcf17edb2c08a4704259dadac196fe5e9274067e7a20511fad1743"},
{file = "coverage-7.4.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:abbbd8093c5229c72d4c2926afaee0e6e3140de69d5dcd918b2921f2f0c8baba"}, {file = "coverage-7.5.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:41327143c5b1d715f5f98a397608f90ab9ebba606ae4e6f3389c2145410c52b1"},
{file = "coverage-7.4.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:35eb581efdacf7b7422af677b92170da4ef34500467381e805944a3201df2079"}, {file = "coverage-7.5.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:565b2e82d0968c977e0b0f7cbf25fd06d78d4856289abc79694c8edcce6eb2de"},
{file = "coverage-7.4.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:8249b1c7334be8f8c3abcaaa996e1e4927b0e5a23b65f5bf6cfe3180d8ca7840"}, {file = "coverage-7.5.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:cf3539007202ebfe03923128fedfdd245db5860a36810136ad95a564a2fdffff"},
{file = "coverage-7.4.3-cp311-cp311-win32.whl", hash = "sha256:cf30900aa1ba595312ae41978b95e256e419d8a823af79ce670835409fc02ad3"}, {file = "coverage-7.5.0-cp311-cp311-win32.whl", hash = "sha256:bf0b4b8d9caa8d64df838e0f8dcf68fb570c5733b726d1494b87f3da85db3a2d"},
{file = "coverage-7.4.3-cp311-cp311-win_amd64.whl", hash = "sha256:18c7320695c949de11a351742ee001849912fd57e62a706d83dfc1581897fa2e"}, {file = "coverage-7.5.0-cp311-cp311-win_amd64.whl", hash = "sha256:9c6384cc90e37cfb60435bbbe0488444e54b98700f727f16f64d8bfda0b84656"},
{file = "coverage-7.4.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b51bfc348925e92a9bd9b2e48dad13431b57011fd1038f08316e6bf1df107d10"}, {file = "coverage-7.5.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:fed7a72d54bd52f4aeb6c6e951f363903bd7d70bc1cad64dd1f087980d309ab9"},
{file = "coverage-7.4.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d6cdecaedea1ea9e033d8adf6a0ab11107b49571bbb9737175444cea6eb72328"}, {file = "coverage-7.5.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:cbe6581fcff7c8e262eb574244f81f5faaea539e712a058e6707a9d272fe5b64"},
{file = "coverage-7.4.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3b2eccb883368f9e972e216c7b4c7c06cabda925b5f06dde0650281cb7666a30"}, {file = "coverage-7.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ad97ec0da94b378e593ef532b980c15e377df9b9608c7c6da3506953182398af"},
{file = "coverage-7.4.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6c00cdc8fa4e50e1cc1f941a7f2e3e0f26cb2a1233c9696f26963ff58445bac7"}, {file = "coverage-7.5.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bd4bacd62aa2f1a1627352fe68885d6ee694bdaebb16038b6e680f2924a9b2cc"},
{file = "coverage-7.4.3-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b9a4a8dd3dcf4cbd3165737358e4d7dfbd9d59902ad11e3b15eebb6393b0446e"}, {file = "coverage-7.5.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:adf032b6c105881f9d77fa17d9eebe0ad1f9bfb2ad25777811f97c5362aa07f2"},
{file = "coverage-7.4.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:062b0a75d9261e2f9c6d071753f7eef0fc9caf3a2c82d36d76667ba7b6470003"}, {file = "coverage-7.5.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:4ba01d9ba112b55bfa4b24808ec431197bb34f09f66f7cb4fd0258ff9d3711b1"},
{file = "coverage-7.4.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:ebe7c9e67a2d15fa97b77ea6571ce5e1e1f6b0db71d1d5e96f8d2bf134303c1d"}, {file = "coverage-7.5.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:f0bfe42523893c188e9616d853c47685e1c575fe25f737adf473d0405dcfa7eb"},
{file = "coverage-7.4.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:c0a120238dd71c68484f02562f6d446d736adcc6ca0993712289b102705a9a3a"}, {file = "coverage-7.5.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:a9a7ef30a1b02547c1b23fa9a5564f03c9982fc71eb2ecb7f98c96d7a0db5cf2"},
{file = "coverage-7.4.3-cp312-cp312-win32.whl", hash = "sha256:37389611ba54fd6d278fde86eb2c013c8e50232e38f5c68235d09d0a3f8aa352"}, {file = "coverage-7.5.0-cp312-cp312-win32.whl", hash = "sha256:3c2b77f295edb9fcdb6a250f83e6481c679335ca7e6e4a955e4290350f2d22a4"},
{file = "coverage-7.4.3-cp312-cp312-win_amd64.whl", hash = "sha256:d25b937a5d9ffa857d41be042b4238dd61db888533b53bc76dc082cb5a15e914"}, {file = "coverage-7.5.0-cp312-cp312-win_amd64.whl", hash = "sha256:427e1e627b0963ac02d7c8730ca6d935df10280d230508c0ba059505e9233475"},
{file = "coverage-7.4.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:28ca2098939eabab044ad68850aac8f8db6bf0b29bc7f2887d05889b17346454"}, {file = "coverage-7.5.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9dd88fce54abbdbf4c42fb1fea0e498973d07816f24c0e27a1ecaf91883ce69e"},
{file = "coverage-7.4.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:280459f0a03cecbe8800786cdc23067a8fc64c0bd51dc614008d9c36e1659d7e"}, {file = "coverage-7.5.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a898c11dca8f8c97b467138004a30133974aacd572818c383596f8d5b2eb04a9"},
{file = "coverage-7.4.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6c0cdedd3500e0511eac1517bf560149764b7d8e65cb800d8bf1c63ebf39edd2"}, {file = "coverage-7.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:07dfdd492d645eea1bd70fb1d6febdcf47db178b0d99161d8e4eed18e7f62fe7"},
{file = "coverage-7.4.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9a9babb9466fe1da12417a4aed923e90124a534736de6201794a3aea9d98484e"}, {file = "coverage-7.5.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d3d117890b6eee85887b1eed41eefe2e598ad6e40523d9f94c4c4b213258e4a4"},
{file = "coverage-7.4.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dec9de46a33cf2dd87a5254af095a409ea3bf952d85ad339751e7de6d962cde6"}, {file = "coverage-7.5.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6afd2e84e7da40fe23ca588379f815fb6dbbb1b757c883935ed11647205111cb"},
{file = "coverage-7.4.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:16bae383a9cc5abab9bb05c10a3e5a52e0a788325dc9ba8499e821885928968c"}, {file = "coverage-7.5.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:a9960dd1891b2ddf13a7fe45339cd59ecee3abb6b8326d8b932d0c5da208104f"},
{file = "coverage-7.4.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:2c854ce44e1ee31bda4e318af1dbcfc929026d12c5ed030095ad98197eeeaed0"}, {file = "coverage-7.5.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:ced268e82af993d7801a9db2dbc1d2322e786c5dc76295d8e89473d46c6b84d4"},
{file = "coverage-7.4.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:ce8c50520f57ec57aa21a63ea4f325c7b657386b3f02ccaedeccf9ebe27686e1"}, {file = "coverage-7.5.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:e7c211f25777746d468d76f11719e64acb40eed410d81c26cefac641975beb88"},
{file = "coverage-7.4.3-cp38-cp38-win32.whl", hash = "sha256:708a3369dcf055c00ddeeaa2b20f0dd1ce664eeabde6623e516c5228b753654f"}, {file = "coverage-7.5.0-cp38-cp38-win32.whl", hash = "sha256:262fffc1f6c1a26125d5d573e1ec379285a3723363f3bd9c83923c9593a2ac25"},
{file = "coverage-7.4.3-cp38-cp38-win_amd64.whl", hash = "sha256:1bf25fbca0c8d121a3e92a2a0555c7e5bc981aee5c3fdaf4bb7809f410f696b9"}, {file = "coverage-7.5.0-cp38-cp38-win_amd64.whl", hash = "sha256:eed462b4541c540d63ab57b3fc69e7d8c84d5957668854ee4e408b50e92ce26a"},
{file = "coverage-7.4.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3b253094dbe1b431d3a4ac2f053b6d7ede2664ac559705a704f621742e034f1f"}, {file = "coverage-7.5.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d0194d654e360b3e6cc9b774e83235bae6b9b2cac3be09040880bb0e8a88f4a1"},
{file = "coverage-7.4.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:77fbfc5720cceac9c200054b9fab50cb2a7d79660609200ab83f5db96162d20c"}, {file = "coverage-7.5.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:33c020d3322662e74bc507fb11488773a96894aa82a622c35a5a28673c0c26f5"},
{file = "coverage-7.4.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6679060424faa9c11808598504c3ab472de4531c571ab2befa32f4971835788e"}, {file = "coverage-7.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0cbdf2cae14a06827bec50bd58e49249452d211d9caddd8bd80e35b53cb04631"},
{file = "coverage-7.4.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4af154d617c875b52651dd8dd17a31270c495082f3d55f6128e7629658d63765"}, {file = "coverage-7.5.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3235d7c781232e525b0761730e052388a01548bd7f67d0067a253887c6e8df46"},
{file = "coverage-7.4.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8640f1fde5e1b8e3439fe482cdc2b0bb6c329f4bb161927c28d2e8879c6029ee"}, {file = "coverage-7.5.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db2de4e546f0ec4b2787d625e0b16b78e99c3e21bc1722b4977c0dddf11ca84e"},
{file = "coverage-7.4.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:69b9f6f66c0af29642e73a520b6fed25ff9fd69a25975ebe6acb297234eda501"}, {file = "coverage-7.5.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:4d0e206259b73af35c4ec1319fd04003776e11e859936658cb6ceffdeba0f5be"},
{file = "coverage-7.4.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:0842571634f39016a6c03e9d4aba502be652a6e4455fadb73cd3a3a49173e38f"}, {file = "coverage-7.5.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:2055c4fb9a6ff624253d432aa471a37202cd8f458c033d6d989be4499aed037b"},
{file = "coverage-7.4.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a78ed23b08e8ab524551f52953a8a05d61c3a760781762aac49f8de6eede8c45"}, {file = "coverage-7.5.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:075299460948cd12722a970c7eae43d25d37989da682997687b34ae6b87c0ef0"},
{file = "coverage-7.4.3-cp39-cp39-win32.whl", hash = "sha256:c0524de3ff096e15fcbfe8f056fdb4ea0bf497d584454f344d59fce069d3e6e9"}, {file = "coverage-7.5.0-cp39-cp39-win32.whl", hash = "sha256:280132aada3bc2f0fac939a5771db4fbb84f245cb35b94fae4994d4c1f80dae7"},
{file = "coverage-7.4.3-cp39-cp39-win_amd64.whl", hash = "sha256:0209a6369ccce576b43bb227dc8322d8ef9e323d089c6f3f26a597b09cb4d2aa"}, {file = "coverage-7.5.0-cp39-cp39-win_amd64.whl", hash = "sha256:c58536f6892559e030e6924896a44098bc1290663ea12532c78cef71d0df8493"},
{file = "coverage-7.4.3-pp38.pp39.pp310-none-any.whl", hash = "sha256:7cbde573904625509a3f37b6fecea974e363460b556a627c60dc2f47e2fffa51"}, {file = "coverage-7.5.0-pp38.pp39.pp310-none-any.whl", hash = "sha256:2b57780b51084d5223eee7b59f0d4911c31c16ee5aa12737c7a02455829ff067"},
{file = "coverage-7.4.3.tar.gz", hash = "sha256:276f6077a5c61447a48d133ed13e759c09e62aff0dc84274a68dc18660104d52"}, {file = "coverage-7.5.0.tar.gz", hash = "sha256:cf62d17310f34084c59c01e027259076479128d11e4661bb6c9acb38c5e19bb8"},
] ]
[package.dependencies] [package.dependencies]
@@ -393,13 +408,13 @@ files = [
[[package]] [[package]]
name = "exceptiongroup" name = "exceptiongroup"
version = "1.2.0" version = "1.2.1"
description = "Backport of PEP 654 (exception groups)" description = "Backport of PEP 654 (exception groups)"
optional = false optional = false
python-versions = ">=3.7" python-versions = ">=3.7"
files = [ files = [
{file = "exceptiongroup-1.2.0-py3-none-any.whl", hash = "sha256:4bfd3996ac73b41e9b9628b04e079f193850720ea5945fc96a08633c66912f14"}, {file = "exceptiongroup-1.2.1-py3-none-any.whl", hash = "sha256:5258b9ed329c5bbdd31a309f53cbfb0b155341807f6ff7606a1e801a891b29ad"},
{file = "exceptiongroup-1.2.0.tar.gz", hash = "sha256:91f5c769735f051a4290d52edd0858999b57e5876e9f85937691bd4c9fa3ed68"}, {file = "exceptiongroup-1.2.1.tar.gz", hash = "sha256:a4785e48b045528f5bfe627b6ad554ff32def154f42372786903b7abcfe1aa16"},
] ]
[package.extras] [package.extras]
@@ -437,60 +452,61 @@ smmap = ">=3.0.1,<6"
[[package]] [[package]]
name = "gitpython" name = "gitpython"
version = "3.1.42" version = "3.1.43"
description = "GitPython is a Python library used to interact with Git repositories" description = "GitPython is a Python library used to interact with Git repositories"
optional = false optional = false
python-versions = ">=3.7" python-versions = ">=3.7"
files = [ files = [
{file = "GitPython-3.1.42-py3-none-any.whl", hash = "sha256:1bf9cd7c9e7255f77778ea54359e54ac22a72a5b51288c457c881057b7bb9ecd"}, {file = "GitPython-3.1.43-py3-none-any.whl", hash = "sha256:eec7ec56b92aad751f9912a73404bc02ba212a23adb2c7098ee668417051a1ff"},
{file = "GitPython-3.1.42.tar.gz", hash = "sha256:2d99869e0fef71a73cbd242528105af1d6c1b108c60dfabd994bf292f76c3ceb"}, {file = "GitPython-3.1.43.tar.gz", hash = "sha256:35f314a9f878467f5453cc1fee295c3e18e52f1b99f10f6cf5b1682e968a9e7c"},
] ]
[package.dependencies] [package.dependencies]
gitdb = ">=4.0.1,<5" gitdb = ">=4.0.1,<5"
[package.extras] [package.extras]
test = ["black", "coverage[toml]", "ddt (>=1.1.1,!=1.4.3)", "mock", "mypy", "pre-commit", "pytest (>=7.3.1)", "pytest-cov", "pytest-instafail", "pytest-mock", "pytest-sugar"] doc = ["sphinx (==4.3.2)", "sphinx-autodoc-typehints", "sphinx-rtd-theme", "sphinxcontrib-applehelp (>=1.0.2,<=1.0.4)", "sphinxcontrib-devhelp (==1.0.2)", "sphinxcontrib-htmlhelp (>=2.0.0,<=2.0.1)", "sphinxcontrib-qthelp (==1.0.3)", "sphinxcontrib-serializinghtml (==1.1.5)"]
test = ["coverage[toml]", "ddt (>=1.1.1,!=1.4.3)", "mock", "mypy", "pre-commit", "pytest (>=7.3.1)", "pytest-cov", "pytest-instafail", "pytest-mock", "pytest-sugar", "typing-extensions"]
[[package]] [[package]]
name = "idna" name = "idna"
version = "3.6" version = "3.7"
description = "Internationalized Domain Names in Applications (IDNA)" description = "Internationalized Domain Names in Applications (IDNA)"
optional = false optional = false
python-versions = ">=3.5" python-versions = ">=3.5"
files = [ files = [
{file = "idna-3.6-py3-none-any.whl", hash = "sha256:c05567e9c24a6b9faaa835c4821bad0590fbb9d5779e7caa6e1cc4978e7eb24f"}, {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"},
{file = "idna-3.6.tar.gz", hash = "sha256:9ecdbbd083b06798ae1e86adcbfe8ab1479cf864e4ee30fe4e46a003d12491ca"}, {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"},
] ]
[[package]] [[package]]
name = "importlib-metadata" name = "importlib-metadata"
version = "7.0.1" version = "7.1.0"
description = "Read metadata from Python packages" description = "Read metadata from Python packages"
optional = false optional = false
python-versions = ">=3.8" python-versions = ">=3.8"
files = [ files = [
{file = "importlib_metadata-7.0.1-py3-none-any.whl", hash = "sha256:4805911c3a4ec7c3966410053e9ec6a1fecd629117df5adee56dfc9432a1081e"}, {file = "importlib_metadata-7.1.0-py3-none-any.whl", hash = "sha256:30962b96c0c223483ed6cc7280e7f0199feb01a0e40cfae4d4450fc6fab1f570"},
{file = "importlib_metadata-7.0.1.tar.gz", hash = "sha256:f238736bb06590ae52ac1fab06a3a9ef1d8dce2b7a35b5ab329371d6c8f5d2cc"}, {file = "importlib_metadata-7.1.0.tar.gz", hash = "sha256:b78938b926ee8d5f020fc4772d487045805a55ddbad2ecf21c6d60938dc7fcd2"},
] ]
[package.dependencies] [package.dependencies]
zipp = ">=0.5" zipp = ">=0.5"
[package.extras] [package.extras]
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"] docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"]
perf = ["ipython"] perf = ["ipython"]
testing = ["flufl.flake8", "importlib-resources (>=1.3)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy (>=0.9.1)", "pytest-perf (>=0.9.2)", "pytest-ruff"] testing = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-perf (>=0.9.2)", "pytest-ruff (>=0.2.1)"]
[[package]] [[package]]
name = "importlib-resources" name = "importlib-resources"
version = "6.1.2" version = "6.4.0"
description = "Read resources from Python packages" description = "Read resources from Python packages"
optional = false optional = false
python-versions = ">=3.8" python-versions = ">=3.8"
files = [ files = [
{file = "importlib_resources-6.1.2-py3-none-any.whl", hash = "sha256:9a0a862501dc38b68adebc82970140c9e4209fc99601782925178f8386339938"}, {file = "importlib_resources-6.4.0-py3-none-any.whl", hash = "sha256:50d10f043df931902d4194ea07ec57960f66a80449ff867bfe782b4c486ba78c"},
{file = "importlib_resources-6.1.2.tar.gz", hash = "sha256:308abf8474e2dba5f867d279237cd4076482c3de7104a40b41426370e891549b"}, {file = "importlib_resources-6.4.0.tar.gz", hash = "sha256:cdb2b453b8046ca4e3798eb1d84f3cce1446a0e8e7b5ef4efb600f19fc398145"},
] ]
[package.dependencies] [package.dependencies]
@@ -498,7 +514,7 @@ zipp = {version = ">=3.1.0", markers = "python_version < \"3.10\""}
[package.extras] [package.extras]
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"] docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"]
testing = ["pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-ruff (>=0.2.1)", "zipp (>=3.17)"] testing = ["jaraco.test (>=5.4)", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-ruff (>=0.2.1)", "zipp (>=3.17)"]
[[package]] [[package]]
name = "iniconfig" name = "iniconfig"
@@ -523,14 +539,50 @@ files = [
] ]
[[package]] [[package]]
name = "jaraco.classes" name = "jaraco-classes"
version = "3.3.1" version = "3.4.0"
description = "Utility functions for Python class constructs" description = "Utility functions for Python class constructs"
optional = false optional = false
python-versions = ">=3.8" python-versions = ">=3.8"
files = [ files = [
{file = "jaraco.classes-3.3.1-py3-none-any.whl", hash = "sha256:86b534de565381f6b3c1c830d13f931d7be1a75f0081c57dff615578676e2206"}, {file = "jaraco.classes-3.4.0-py3-none-any.whl", hash = "sha256:f662826b6bed8cace05e7ff873ce0f9283b5c924470fe664fff1c2f00f581790"},
{file = "jaraco.classes-3.3.1.tar.gz", hash = "sha256:cb28a5ebda8bc47d8c8015307d93163464f9f2b91ab4006e09ff0ce07e8bfb30"}, {file = "jaraco.classes-3.4.0.tar.gz", hash = "sha256:47a024b51d0239c0dd8c8540c6c7f484be3b8fcf0b2d85c13825780d3b3f3acd"},
]
[package.dependencies]
more-itertools = "*"
[package.extras]
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"]
testing = ["pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-ruff (>=0.2.1)"]
[[package]]
name = "jaraco-context"
version = "5.3.0"
description = "Useful decorators and context managers"
optional = false
python-versions = ">=3.8"
files = [
{file = "jaraco.context-5.3.0-py3-none-any.whl", hash = "sha256:3e16388f7da43d384a1a7cd3452e72e14732ac9fe459678773a3608a812bf266"},
{file = "jaraco.context-5.3.0.tar.gz", hash = "sha256:c2f67165ce1f9be20f32f650f25d8edfc1646a8aeee48ae06fb35f90763576d2"},
]
[package.dependencies]
"backports.tarfile" = {version = "*", markers = "python_version < \"3.12\""}
[package.extras]
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"]
testing = ["portend", "pytest (>=6,!=8.1.1)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-ruff (>=0.2.1)"]
[[package]]
name = "jaraco-functools"
version = "4.0.1"
description = "Functools like those found in stdlib"
optional = false
python-versions = ">=3.8"
files = [
{file = "jaraco.functools-4.0.1-py3-none-any.whl", hash = "sha256:3b24ccb921d6b593bdceb56ce14799204f473976e2a9d4b15b04d0f2c2326664"},
{file = "jaraco_functools-4.0.1.tar.gz", hash = "sha256:d33fa765374c0611b52f8b3a795f8900869aa88c84769d4d1746cd68fb28c3e8"},
] ]
[package.dependencies] [package.dependencies]
@@ -538,7 +590,7 @@ more-itertools = "*"
[package.extras] [package.extras]
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"] docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"]
testing = ["pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-ruff (>=0.2.1)"] testing = ["jaraco.classes", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-ruff (>=0.2.1)"]
[[package]] [[package]]
name = "jeepney" name = "jeepney"
@@ -557,27 +609,29 @@ trio = ["async_generator", "trio"]
[[package]] [[package]]
name = "keyring" name = "keyring"
version = "24.3.1" version = "25.2.0"
description = "Store and access your passwords safely." description = "Store and access your passwords safely."
optional = false optional = false
python-versions = ">=3.8" python-versions = ">=3.8"
files = [ files = [
{file = "keyring-24.3.1-py3-none-any.whl", hash = "sha256:df38a4d7419a6a60fea5cef1e45a948a3e8430dd12ad88b0f423c5c143906218"}, {file = "keyring-25.2.0-py3-none-any.whl", hash = "sha256:19f17d40335444aab84b19a0d16a77ec0758a9c384e3446ae2ed8bd6d53b67a5"},
{file = "keyring-24.3.1.tar.gz", hash = "sha256:c3327b6ffafc0e8befbdb597cacdb4928ffe5c1212f7645f186e6d9957a898db"}, {file = "keyring-25.2.0.tar.gz", hash = "sha256:7045f367268ce42dba44745050164b431e46f6e92f99ef2937dfadaef368d8cf"},
] ]
[package.dependencies] [package.dependencies]
importlib-metadata = {version = ">=4.11.4", markers = "python_version < \"3.12\""} importlib-metadata = {version = ">=4.11.4", markers = "python_version < \"3.12\""}
importlib-resources = {version = "*", markers = "python_version < \"3.9\""} importlib-resources = {version = "*", markers = "python_version < \"3.9\""}
"jaraco.classes" = "*" "jaraco.classes" = "*"
"jaraco.context" = "*"
"jaraco.functools" = "*"
jeepney = {version = ">=0.4.2", markers = "sys_platform == \"linux\""} jeepney = {version = ">=0.4.2", markers = "sys_platform == \"linux\""}
pywin32-ctypes = {version = ">=0.2.0", markers = "sys_platform == \"win32\""} pywin32-ctypes = {version = ">=0.2.0", markers = "sys_platform == \"win32\""}
SecretStorage = {version = ">=3.2", markers = "sys_platform == \"linux\""} SecretStorage = {version = ">=3.2", markers = "sys_platform == \"linux\""}
[package.extras] [package.extras]
completion = ["shtab (>=1.1.0)"] completion = ["shtab (>=1.1.0)"]
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"] docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"]
testing = ["pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-ruff (>=0.2.1)"] testing = ["pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-ruff (>=0.2.1)"]
[[package]] [[package]]
name = "mccabe" name = "mccabe"
@@ -656,27 +710,27 @@ files = [
[[package]] [[package]]
name = "nh3" name = "nh3"
version = "0.2.15" version = "0.2.17"
description = "Python bindings to the ammonia HTML sanitization library." description = "Python bindings to the ammonia HTML sanitization library."
optional = false optional = false
python-versions = "*" python-versions = "*"
files = [ files = [
{file = "nh3-0.2.15-cp37-abi3-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl", hash = "sha256:9c0d415f6b7f2338f93035bba5c0d8c1b464e538bfbb1d598acd47d7969284f0"}, {file = "nh3-0.2.17-cp37-abi3-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl", hash = "sha256:551672fd71d06cd828e282abdb810d1be24e1abb7ae2543a8fa36a71c1006fe9"},
{file = "nh3-0.2.15-cp37-abi3-macosx_10_12_x86_64.whl", hash = "sha256:6f42f99f0cf6312e470b6c09e04da31f9abaadcd3eb591d7d1a88ea931dca7f3"}, {file = "nh3-0.2.17-cp37-abi3-macosx_10_12_x86_64.whl", hash = "sha256:c551eb2a3876e8ff2ac63dff1585236ed5dfec5ffd82216a7a174f7c5082a78a"},
{file = "nh3-0.2.15-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac19c0d68cd42ecd7ead91a3a032fdfff23d29302dbb1311e641a130dfefba97"}, {file = "nh3-0.2.17-cp37-abi3-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:66f17d78826096291bd264f260213d2b3905e3c7fae6dfc5337d49429f1dc9f3"},
{file = "nh3-0.2.15-cp37-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f0d77272ce6d34db6c87b4f894f037d55183d9518f948bba236fe81e2bb4e28"}, {file = "nh3-0.2.17-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0316c25b76289cf23be6b66c77d3608a4fdf537b35426280032f432f14291b9a"},
{file = "nh3-0.2.15-cp37-abi3-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:8d595df02413aa38586c24811237e95937ef18304e108b7e92c890a06793e3bf"}, {file = "nh3-0.2.17-cp37-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:22c26e20acbb253a5bdd33d432a326d18508a910e4dcf9a3316179860d53345a"},
{file = "nh3-0.2.15-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86e447a63ca0b16318deb62498db4f76fc60699ce0a1231262880b38b6cff911"}, {file = "nh3-0.2.17-cp37-abi3-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:85cdbcca8ef10733bd31f931956f7fbb85145a4d11ab9e6742bbf44d88b7e351"},
{file = "nh3-0.2.15-cp37-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3277481293b868b2715907310c7be0f1b9d10491d5adf9fce11756a97e97eddf"}, {file = "nh3-0.2.17-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:40015514022af31975c0b3bca4014634fa13cb5dc4dbcbc00570acc781316dcc"},
{file = "nh3-0.2.15-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:60684857cfa8fdbb74daa867e5cad3f0c9789415aba660614fe16cd66cbb9ec7"}, {file = "nh3-0.2.17-cp37-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ba73a2f8d3a1b966e9cdba7b211779ad8a2561d2dba9674b8a19ed817923f65f"},
{file = "nh3-0.2.15-cp37-abi3-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:3b803a5875e7234907f7d64777dfde2b93db992376f3d6d7af7f3bc347deb305"}, {file = "nh3-0.2.17-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c21bac1a7245cbd88c0b0e4a420221b7bfa838a2814ee5bb924e9c2f10a1120b"},
{file = "nh3-0.2.15-cp37-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:0d02d0ff79dfd8208ed25a39c12cbda092388fff7f1662466e27d97ad011b770"}, {file = "nh3-0.2.17-cp37-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:d7a25fd8c86657f5d9d576268e3b3767c5cd4f42867c9383618be8517f0f022a"},
{file = "nh3-0.2.15-cp37-abi3-musllinux_1_2_armv7l.whl", hash = "sha256:f3b53ba93bb7725acab1e030bc2ecd012a817040fd7851b332f86e2f9bb98dc6"}, {file = "nh3-0.2.17-cp37-abi3-musllinux_1_2_armv7l.whl", hash = "sha256:c790769152308421283679a142dbdb3d1c46c79c823008ecea8e8141db1a2062"},
{file = "nh3-0.2.15-cp37-abi3-musllinux_1_2_i686.whl", hash = "sha256:b1e97221cedaf15a54f5243f2c5894bb12ca951ae4ddfd02a9d4ea9df9e1a29d"}, {file = "nh3-0.2.17-cp37-abi3-musllinux_1_2_i686.whl", hash = "sha256:b4427ef0d2dfdec10b641ed0bdaf17957eb625b2ec0ea9329b3d28806c153d71"},
{file = "nh3-0.2.15-cp37-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:a5167a6403d19c515217b6bcaaa9be420974a6ac30e0da9e84d4fc67a5d474c5"}, {file = "nh3-0.2.17-cp37-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:a3f55fabe29164ba6026b5ad5c3151c314d136fd67415a17660b4aaddacf1b10"},
{file = "nh3-0.2.15-cp37-abi3-win32.whl", hash = "sha256:427fecbb1031db085eaac9931362adf4a796428ef0163070c484b5a768e71601"}, {file = "nh3-0.2.17-cp37-abi3-win32.whl", hash = "sha256:1a814dd7bba1cb0aba5bcb9bebcc88fd801b63e21e2450ae6c52d3b3336bc911"},
{file = "nh3-0.2.15-cp37-abi3-win_amd64.whl", hash = "sha256:bc2d086fb540d0fa52ce35afaded4ea526b8fc4d3339f783db55c95de40ef02e"}, {file = "nh3-0.2.17-cp37-abi3-win_amd64.whl", hash = "sha256:1aa52a7def528297f256de0844e8dd680ee279e79583c76d6fa73a978186ddfb"},
{file = "nh3-0.2.15.tar.gz", hash = "sha256:d1e30ff2d8d58fb2a14961f7aac1bbb1c51f9bdd7da727be35c63826060b0bf3"}, {file = "nh3-0.2.17.tar.gz", hash = "sha256:40d0741a19c3d645e54efba71cb0d8c475b59135c1e3c580f879ad5514cbf028"},
] ]
[[package]] [[package]]
@@ -710,13 +764,13 @@ files = [
[[package]] [[package]]
name = "packaging" name = "packaging"
version = "23.2" version = "24.0"
description = "Core utilities for Python packages" description = "Core utilities for Python packages"
optional = false optional = false
python-versions = ">=3.7" python-versions = ">=3.7"
files = [ files = [
{file = "packaging-23.2-py3-none-any.whl", hash = "sha256:8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7"}, {file = "packaging-24.0-py3-none-any.whl", hash = "sha256:2ddfb553fdf02fb784c234c7ba6ccc288296ceabec964ad2eae3777778130bc5"},
{file = "packaging-23.2.tar.gz", hash = "sha256:048fb0e9405036518eaaf48a55953c750c11e1a1b68e0dd1a9d62ed0c092cfc5"}, {file = "packaging-24.0.tar.gz", hash = "sha256:eb82c5e3e56209074766e6885bb04b8c38a0c015d0a30036ebe7ece34c9989e9"},
] ]
[[package]] [[package]]
@@ -732,13 +786,13 @@ files = [
[[package]] [[package]]
name = "pdme" name = "pdme"
version = "0.9.3" version = "1.0.0"
description = "Python dipole model evaluator" description = "Python dipole model evaluator"
optional = false optional = false
python-versions = ">=3.8.1,<3.10" python-versions = "<3.10,>=3.8.1"
files = [ files = [
{file = "pdme-0.9.3-py3-none-any.whl", hash = "sha256:0a11caa8ce18829695fa0457bbfc4d15210945fcb58be05ffb96eda8fdd7e9c8"}, {file = "pdme-1.0.0-py3-none-any.whl", hash = "sha256:8fb8d1bf3d88f73118da5731332ae00c721b98daf53b225069e422af1a1a67f2"},
{file = "pdme-0.9.3.tar.gz", hash = "sha256:0de948e301780e79bbe78887be8ac4165899cbca32fa845a1ace8c08e72e300b"}, {file = "pdme-1.0.0.tar.gz", hash = "sha256:02cabf2e6fc2ddaf0871d0b3afcf265bca16520ee7bc1c74672be62f7a8390bd"},
] ]
[package.dependencies] [package.dependencies]
@@ -747,42 +801,43 @@ scipy = ">=1.10,<1.11"
[[package]] [[package]]
name = "pkginfo" name = "pkginfo"
version = "1.9.6" version = "1.10.0"
description = "Query metadata from sdists / bdists / installed packages." description = "Query metadata from sdists / bdists / installed packages."
optional = false optional = false
python-versions = ">=3.6" python-versions = ">=3.6"
files = [ files = [
{file = "pkginfo-1.9.6-py3-none-any.whl", hash = "sha256:4b7a555a6d5a22169fcc9cf7bfd78d296b0361adad412a346c1226849af5e546"}, {file = "pkginfo-1.10.0-py3-none-any.whl", hash = "sha256:889a6da2ed7ffc58ab5b900d888ddce90bce912f2d2de1dc1c26f4cb9fe65097"},
{file = "pkginfo-1.9.6.tar.gz", hash = "sha256:8fd5896e8718a4372f0ea9cc9d96f6417c9b986e23a4d116dda26b62cc29d046"}, {file = "pkginfo-1.10.0.tar.gz", hash = "sha256:5df73835398d10db79f8eecd5cd86b1f6d29317589ea70796994d49399af6297"},
] ]
[package.extras] [package.extras]
testing = ["pytest", "pytest-cov"] testing = ["pytest", "pytest-cov", "wheel"]
[[package]] [[package]]
name = "platformdirs" name = "platformdirs"
version = "4.2.0" version = "4.2.1"
description = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"." description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`."
optional = false optional = false
python-versions = ">=3.8" python-versions = ">=3.8"
files = [ files = [
{file = "platformdirs-4.2.0-py3-none-any.whl", hash = "sha256:0614df2a2f37e1a662acbd8e2b25b92ccf8632929bc6d43467e17fe89c75e068"}, {file = "platformdirs-4.2.1-py3-none-any.whl", hash = "sha256:17d5a1161b3fd67b390023cb2d3b026bbd40abde6fdb052dfbd3a29c3ba22ee1"},
{file = "platformdirs-4.2.0.tar.gz", hash = "sha256:ef0cc731df711022c174543cb70a9b5bd22e5a9337c8624ef2c2ceb8ddad8768"}, {file = "platformdirs-4.2.1.tar.gz", hash = "sha256:031cd18d4ec63ec53e82dceaac0417d218a6863f7745dfcc9efe7793b7039bdf"},
] ]
[package.extras] [package.extras]
docs = ["furo (>=2023.9.10)", "proselint (>=0.13)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] docs = ["furo (>=2023.9.10)", "proselint (>=0.13)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"]
test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)"] test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)"]
type = ["mypy (>=1.8)"]
[[package]] [[package]]
name = "pluggy" name = "pluggy"
version = "1.4.0" version = "1.5.0"
description = "plugin and hook calling mechanisms for python" description = "plugin and hook calling mechanisms for python"
optional = false optional = false
python-versions = ">=3.8" python-versions = ">=3.8"
files = [ files = [
{file = "pluggy-1.4.0-py3-none-any.whl", hash = "sha256:7db9f7b503d67d1c5b95f59773ebb58a8c1c288129a88665838012cfb07b8981"}, {file = "pluggy-1.5.0-py3-none-any.whl", hash = "sha256:44e1ad92c8ca002de6377e165f3e0f1be63266ab4d554740532335b9d75ea669"},
{file = "pluggy-1.4.0.tar.gz", hash = "sha256:8c85c2876142a764e5b7548e7d9a0e0ddb46f5185161049a79b7e974454223be"}, {file = "pluggy-1.5.0.tar.gz", hash = "sha256:2cffa88e94fdc978c4c574f15f9e59b7f4201d439195c3715ca9e2486f1d0cf1"},
] ]
[package.extras] [package.extras]
@@ -802,13 +857,13 @@ files = [
[[package]] [[package]]
name = "pycparser" name = "pycparser"
version = "2.21" version = "2.22"
description = "C parser in Python" description = "C parser in Python"
optional = false optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" python-versions = ">=3.8"
files = [ files = [
{file = "pycparser-2.21-py2.py3-none-any.whl", hash = "sha256:8ee45429555515e1f6b185e78100aea234072576aa43ab53aefcae078162fca9"}, {file = "pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc"},
{file = "pycparser-2.21.tar.gz", hash = "sha256:e644fdec12f7872f86c58ff790da456218b10f863970249516d60a5eaca77206"}, {file = "pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6"},
] ]
[[package]] [[package]]
@@ -839,13 +894,13 @@ windows-terminal = ["colorama (>=0.4.6)"]
[[package]] [[package]]
name = "pytest" name = "pytest"
version = "8.0.2" version = "8.2.0"
description = "pytest: simple powerful testing with Python" description = "pytest: simple powerful testing with Python"
optional = false optional = false
python-versions = ">=3.8" python-versions = ">=3.8"
files = [ files = [
{file = "pytest-8.0.2-py3-none-any.whl", hash = "sha256:edfaaef32ce5172d5466b5127b42e0d6d35ebbe4453f0e3505d96afd93f6b096"}, {file = "pytest-8.2.0-py3-none-any.whl", hash = "sha256:1733f0620f6cda4095bbf0d9ff8022486e91892245bb9e7d5542c018f612f233"},
{file = "pytest-8.0.2.tar.gz", hash = "sha256:d4051d623a2e0b7e51960ba963193b09ce6daeb9759a451844a21e4ddedfc1bd"}, {file = "pytest-8.2.0.tar.gz", hash = "sha256:d507d4482197eac0ba2bae2e9babf0672eb333017bcedaa5fb1a3d42c1174b3f"},
] ]
[package.dependencies] [package.dependencies]
@@ -853,11 +908,11 @@ colorama = {version = "*", markers = "sys_platform == \"win32\""}
exceptiongroup = {version = ">=1.0.0rc8", markers = "python_version < \"3.11\""} exceptiongroup = {version = ">=1.0.0rc8", markers = "python_version < \"3.11\""}
iniconfig = "*" iniconfig = "*"
packaging = "*" packaging = "*"
pluggy = ">=1.3.0,<2.0" pluggy = ">=1.5,<2.0"
tomli = {version = ">=1.0.0", markers = "python_version < \"3.11\""} tomli = {version = ">=1", markers = "python_version < \"3.11\""}
[package.extras] [package.extras]
testing = ["argcomplete", "attrs (>=19.2.0)", "hypothesis (>=3.56)", "mock", "nose", "pygments (>=2.7.2)", "requests", "setuptools", "xmlschema"] dev = ["argcomplete", "attrs (>=19.2)", "hypothesis (>=3.56)", "mock", "pygments (>=2.7.2)", "requests", "setuptools", "xmlschema"]
[[package]] [[package]]
name = "pytest-cov" name = "pytest-cov"
@@ -1162,13 +1217,13 @@ urllib3 = ">=1.26.0"
[[package]] [[package]]
name = "typing-extensions" name = "typing-extensions"
version = "4.10.0" version = "4.11.0"
description = "Backported and Experimental Type Hints for Python 3.8+" description = "Backported and Experimental Type Hints for Python 3.8+"
optional = false optional = false
python-versions = ">=3.8" python-versions = ">=3.8"
files = [ files = [
{file = "typing_extensions-4.10.0-py3-none-any.whl", hash = "sha256:69b1a937c3a517342112fb4c6df7e72fc39a38e7891a5730ed4985b5214b5475"}, {file = "typing_extensions-4.11.0-py3-none-any.whl", hash = "sha256:c1f94d72897edaf4ce775bb7558d5b79d8126906a14ea5ed1635921406c0387a"},
{file = "typing_extensions-4.10.0.tar.gz", hash = "sha256:b0abd7c89e8fb96f98db18d86106ff1d90ab692004eb746cf6eda2682f91b3cb"}, {file = "typing_extensions-4.11.0.tar.gz", hash = "sha256:83f085bd5ca59c80295fc2a82ab5dac679cbe02b9f33f7d83af68e241bea51b0"},
] ]
[[package]] [[package]]
@@ -1204,20 +1259,20 @@ test = ["pytest (>=6.0.0)", "setuptools (>=65)"]
[[package]] [[package]]
name = "zipp" name = "zipp"
version = "3.17.0" version = "3.18.1"
description = "Backport of pathlib-compatible object wrapper for zip files" description = "Backport of pathlib-compatible object wrapper for zip files"
optional = false optional = false
python-versions = ">=3.8" python-versions = ">=3.8"
files = [ files = [
{file = "zipp-3.17.0-py3-none-any.whl", hash = "sha256:0e923e726174922dce09c53c59ad483ff7bbb8e572e00c7f7c46b88556409f31"}, {file = "zipp-3.18.1-py3-none-any.whl", hash = "sha256:206f5a15f2af3dbaee80769fb7dc6f249695e940acca08dfb2a4769fe61e538b"},
{file = "zipp-3.17.0.tar.gz", hash = "sha256:84e64a1c28cf7e91ed2078bb8cc8c259cb19b76942096c8d7b84947690cabaf0"}, {file = "zipp-3.18.1.tar.gz", hash = "sha256:2884ed22e7d8961de1c9a05142eb69a247f120291bc0206a00a7642f09b5b715"},
] ]
[package.extras] [package.extras]
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"] docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"]
testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy (>=0.9.1)", "pytest-ruff"] testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy", "pytest-ruff (>=0.2.1)"]
[metadata] [metadata]
lock-version = "2.0" lock-version = "2.0"
python-versions = ">=3.8.1,<3.10" python-versions = ">=3.8.1,<3.10"
content-hash = "b7f33da5b5a2af6bcb2a4c95cf391d04a76047d4f7e5c105b7cc38c73563fa51" content-hash = "a28054e255cbd49396795127380c2b7a0cfd742b15cba2184322f3c4894ed041"

View File

@@ -1,14 +1,15 @@
[tool.poetry] [tool.poetry]
name = "deepdog" name = "deepdog"
version = "0.7.9" version = "1.0.1"
description = "" description = ""
authors = ["Deepak Mallubhotla <dmallubhotla+github@gmail.com>"] authors = ["Deepak Mallubhotla <dmallubhotla+github@gmail.com>"]
[tool.poetry.dependencies] [tool.poetry.dependencies]
python = ">=3.8.1,<3.10" python = ">=3.8.1,<3.10"
pdme = "^0.9.3" pdme = "^1.0.0"
numpy = "1.22.3" numpy = "1.22.3"
scipy = "1.10" scipy = "1.10"
tqdm = "^4.66.2"
[tool.poetry.dev-dependencies] [tool.poetry.dev-dependencies]
pytest = ">=6" pytest = ">=6"
@@ -19,6 +20,9 @@ python-semantic-release = "^7.24.0"
black = "^22.3.0" black = "^22.3.0"
syrupy = "^4.0.8" syrupy = "^4.0.8"
[tool.poetry.scripts]
probs = "deepdog.cli.probs:wrapped_main"
[build-system] [build-system]
requires = ["poetry-core>=1.0.0"] requires = ["poetry-core>=1.0.0"]
build-backend = "poetry.core.masonry.api" build-backend = "poetry.core.masonry.api"
@@ -38,6 +42,13 @@ module = [
] ]
ignore_missing_imports = true ignore_missing_imports = true
[[tool.mypy.overrides]]
module = [
"tqdm",
"tqdm.*"
]
ignore_missing_imports = true
[tool.semantic_release] [tool.semantic_release]
version_toml = "pyproject.toml:tool.poetry.version" version_toml = "pyproject.toml:tool.poetry.version"
tag_format = "{version}" tag_format = "{version}"

View File

@@ -25,15 +25,22 @@ if [ -z "$(git status --porcelain)" ]; then
exit 0 exit 0
fi fi
std_version_args=()
if [[ -n "${1:-}" ]]; then
std_version_args+=( "--release-as" "$1" )
echo "Parameter $1 was supplied, so we should use release-as"
else
echo "No release-as parameter specifed."
fi
# Working directory clean # Working directory clean
echo "Doing a dry run..." echo "Doing a dry run..."
npx standard-version --dry-run npx standard-version --dry-run "${std_version_args[@]}"
read -p "Does that look good? [y/N] " -n 1 -r read -p "Does that look good? [y/N] " -n 1 -r
echo # (optional) move to a new line echo # (optional) move to a new line
if [[ $REPLY =~ ^[Yy]$ ]] if [[ $REPLY =~ ^[Yy]$ ]]
then then
# do dangerous stuff # do dangerous stuff
npx standard-version npx standard-version "${std_version_args[@]}"
git push --follow-tags origin master git push --follow-tags origin master
else else
echo "okay, never mind then..." echo "okay, never mind then..."

View File

@@ -1,4 +1,4 @@
const pattern = /(\[tool\.poetry\]\nname = "deepdog"\nversion = ")(?<vers>\d+\.\d+\.\d)(")/mg; const pattern = /(\[tool\.poetry\]\nname = "deepdog"\nversion = ")(?<vers>\d+\.\d+\.\d+)(")/mg;
module.exports.readVersion = function (contents) { module.exports.readVersion = function (contents) {
const result = pattern.exec(contents); const result = pattern.exec(contents);

View File

View File

@@ -0,0 +1,12 @@
import deepdog.indexify
import logging
_logger = logging.getLogger(__name__)
def test_indexifier():
weight_dict = {"key_1": [1, 2, 3], "key_2": ["a", "b", "c"]}
indexifier = deepdog.indexify.Indexifier(weight_dict)
_logger.debug(f"setting up indexifier {indexifier}")
assert indexifier.indexify(0) == {"key_1": 1, "key_2": "a"}
assert indexifier.indexify(5) == {"key_1": 2, "key_2": "c"}

View File

View File

@@ -0,0 +1,28 @@
import deepdog.results
def test_parse_groupdict():
example_column_name = (
"geom_-20_20_-10_10_0_5-orientation_free-dipole_count_100_success"
)
parsed = deepdog.results._parse_bayesrun_column(example_column_name)
expected = deepdog.results.BayesrunColumnParsed(
{
"xmin": "-20",
"xmax": "20",
"ymin": "-10",
"ymax": "10",
"zmin": "0",
"zmax": "5",
"orientation": "free",
"avg_filled": "100",
"field_name": "success",
}
)
assert parsed == expected
# def test_parse_no_match_column_name():
# parsed = deepdog.results.parse_bayesrun_column("There's nothing here")
# assert parsed is None