Compare commits

...

5 Commits

Author SHA1 Message Date
7353b78fc9 chore(deps): update dependency mypy to v1
Some checks failed
renovate/artifacts Artifact file update failure
gitea-physics/deepdog/pipeline/pr-master There was a failure building this commit
2023-07-27 01:30:51 +00:00
57cd746e5c
chore(release): 0.7.3
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2023-07-26 20:27:39 -05:00
878e16286b
deps: updates pytest-cov
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2023-07-26 20:23:48 -05:00
4726ccfb8c
fmt: formatting 2023-07-26 20:21:53 -05:00
598dad1e6d
feat: adds utility options and avoids memory leak
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2023-07-26 20:14:19 -05:00
5 changed files with 71 additions and 30 deletions

View File

@ -2,6 +2,13 @@
All notable changes to this project will be documented in this file. See [standard-version](https://github.com/conventional-changelog/standard-version) for commit guidelines. All notable changes to this project will be documented in this file. See [standard-version](https://github.com/conventional-changelog/standard-version) for commit guidelines.
### [0.7.3](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.2...0.7.3) (2023-07-27)
### Features
* adds utility options and avoids memory leak ([598dad1](https://gitea.deepak.science:2222/physics/deepdog/commit/598dad1e6dc8fc0b7a5b4a90c8e17bf744e8d98c))
### [0.7.2](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.1...0.7.2) (2023-07-24) ### [0.7.2](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.1...0.7.2) (2023-07-24)

View File

@ -70,6 +70,7 @@ class BayesRunWithSubspaceSimulation:
ss_default_r_step=0.01, ss_default_r_step=0.01,
ss_default_w_log_step=0.01, ss_default_w_log_step=0.01,
ss_default_upper_w_log_step=4, ss_default_upper_w_log_step=4,
ss_dump_last_generation=False,
) -> None: ) -> None:
self.dot_inputs = pdme.inputs.inputs_with_frequency_range( self.dot_inputs = pdme.inputs.inputs_with_frequency_range(
dot_positions, frequency_range dot_positions, frequency_range
@ -133,6 +134,7 @@ class BayesRunWithSubspaceSimulation:
self.ss_default_r_step = ss_default_r_step self.ss_default_r_step = ss_default_r_step
self.ss_default_w_log_step = ss_default_w_log_step self.ss_default_w_log_step = ss_default_w_log_step
self.ss_default_upper_w_log_step = ss_default_upper_w_log_step self.ss_default_upper_w_log_step = ss_default_upper_w_log_step
self.ss_dump_last_generation = ss_dump_last_generation
self.run_count = run_count self.run_count = run_count
@ -172,6 +174,8 @@ class BayesRunWithSubspaceSimulation:
self.ss_default_r_step, self.ss_default_r_step,
self.ss_default_w_log_step, self.ss_default_w_log_step,
self.ss_default_upper_w_log_step, self.ss_default_upper_w_log_step,
keep_probs_list=False,
dump_last_generation_to_file=self.ss_dump_last_generation,
) )
results.append(subset_run.execute()) results.append(subset_run.execute())
@ -196,7 +200,9 @@ class BayesRunWithSubspaceSimulation:
for (name, result) in zip(self.model_names, results): for (name, result) in zip(self.model_names, results):
if result.over_target_likelihood is None: if result.over_target_likelihood is None:
clamped_likelihood = result.probs_list[-1][0] / CLAMPING_FACTOR clamped_likelihood = result.probs_list[-1][0] / CLAMPING_FACTOR
_logger.warning(f"got a none result, clamping to {clamped_likelihood}") _logger.warning(
f"got a none result, clamping to {clamped_likelihood}"
)
else: else:
clamped_likelihood = result.over_target_likelihood clamped_likelihood = result.over_target_likelihood
likelihoods.append(clamped_likelihood) likelihoods.append(clamped_likelihood)

View File

@ -17,6 +17,7 @@ class SubsetSimulationResult:
over_target_likelihood: Optional[float] over_target_likelihood: Optional[float]
under_target_cost: Optional[float] under_target_cost: Optional[float]
under_target_likelihood: Optional[float] under_target_likelihood: Optional[float]
lowest_likelihood: Optional[float]
class SubsetSimulation: class SubsetSimulation:
@ -37,6 +38,8 @@ class SubsetSimulation:
default_r_step=0.01, default_r_step=0.01,
default_w_log_step=0.01, default_w_log_step=0.01,
default_upper_w_log_step=4, default_upper_w_log_step=4,
keep_probs_list=True,
dump_last_generation_to_file=False,
): ):
name, model = model_name_pair name, model = model_name_pair
self.model_name = name self.model_name = name
@ -79,6 +82,9 @@ class SubsetSimulation:
self.target_cost = target_cost self.target_cost = target_cost
_logger.info(f"will stop at target cost {target_cost}") _logger.info(f"will stop at target cost {target_cost}")
self.keep_probs_list = keep_probs_list
self.dump_last_generations = dump_last_generation_to_file
def execute(self) -> SubsetSimulationResult: def execute(self) -> SubsetSimulationResult:
probs_list = [] probs_list = []
@ -116,15 +122,27 @@ class SubsetSimulation:
for i in range(self.m_max): for i in range(self.m_max):
next_seeds = all_chains[-self.n_c:] next_seeds = all_chains[-self.n_c:]
for cost_index, cost_chain in enumerate(all_chains[: -self.n_c]): if self.dump_last_generations:
probs_list.append( _logger.info("writing out csv file")
( next_dipoles_seed_dipoles = numpy.array([n[1] for n in next_seeds])
((self.n_c * self.n_s - cost_index) / (self.n_c * self.n_s)) for n in range(self.model.n):
/ (self.n_s ** (i)), _logger.info(f"{next_dipoles_seed_dipoles[:, n].shape}")
cost_chain[0], numpy.savetxt(
i + 1, f"generation_{self.n_c}_{self.n_s}_{i}_dipole_{n}.csv",
next_dipoles_seed_dipoles[:, n],
delimiter=",",
)
if self.keep_probs_list:
for cost_index, cost_chain in enumerate(all_chains[: -self.n_c]):
probs_list.append(
(
((self.n_c * self.n_s - cost_index) / (self.n_c * self.n_s))
/ (self.n_s ** (i)),
cost_chain[0],
i + 1,
)
) )
)
next_seeds_as_array = numpy.array([s for _, s in next_seeds]) next_seeds_as_array = numpy.array([s for _, s in next_seeds])
@ -169,14 +187,18 @@ class SubsetSimulation:
shorter_probs_list = [] shorter_probs_list = []
for cost_index, cost_chain in enumerate(all_chains): for cost_index, cost_chain in enumerate(all_chains):
probs_list.append( if self.keep_probs_list:
( probs_list.append(
((self.n_c * self.n_s - cost_index) / (self.n_c * self.n_s)) (
/ (self.n_s ** (i)), (
cost_chain[0], (self.n_c * self.n_s - cost_index)
i + 1, / (self.n_c * self.n_s)
)
/ (self.n_s ** (i)),
cost_chain[0],
i + 1,
)
) )
)
shorter_probs_list.append( shorter_probs_list.append(
( (
cost_chain[0], cost_chain[0],
@ -191,21 +213,23 @@ class SubsetSimulation:
over_target_likelihood=shorter_probs_list[over_index - 1][1], over_target_likelihood=shorter_probs_list[over_index - 1][1],
under_target_cost=shorter_probs_list[over_index][0], under_target_cost=shorter_probs_list[over_index][0],
under_target_likelihood=shorter_probs_list[over_index][1], under_target_likelihood=shorter_probs_list[over_index][1],
lowest_likelihood=shorter_probs_list[-1][1],
) )
return result return result
# _logger.debug([c[0] for c in all_chains[-n_c:]]) # _logger.debug([c[0] for c in all_chains[-n_c:]])
_logger.info(f"doing level {i + 1}") _logger.info(f"doing level {i + 1}")
for cost_index, cost_chain in enumerate(all_chains): if self.keep_probs_list:
probs_list.append( for cost_index, cost_chain in enumerate(all_chains):
( probs_list.append(
((self.n_c * self.n_s - cost_index) / (self.n_c * self.n_s)) (
/ (self.n_s ** (self.m_max)), ((self.n_c * self.n_s - cost_index) / (self.n_c * self.n_s))
cost_chain[0], / (self.n_s ** (self.m_max)),
self.m_max + 1, cost_chain[0],
self.m_max + 1,
)
) )
)
threshold_cost = all_chains[-self.n_c][0] threshold_cost = all_chains[-self.n_c][0]
_logger.info( _logger.info(
f"final threshold cost: {threshold_cost}, at P = (1 / {self.n_s})^{self.m_max + 1}" f"final threshold cost: {threshold_cost}, at P = (1 / {self.n_s})^{self.m_max + 1}"
@ -215,12 +239,16 @@ class SubsetSimulation:
# for prob, prob_cost in probs_list: # for prob, prob_cost in probs_list:
# _logger.info(f"\t{prob}: {prob_cost}") # _logger.info(f"\t{prob}: {prob_cost}")
probs_list.sort(key=lambda c: c[0], reverse=True) probs_list.sort(key=lambda c: c[0], reverse=True)
min_likelihood = ((1) / (self.n_c * self.n_s)) / (self.n_s ** (self.m_max + 1))
result = SubsetSimulationResult( result = SubsetSimulationResult(
probs_list=probs_list, probs_list=probs_list,
over_target_cost=None, over_target_cost=None,
over_target_likelihood=None, over_target_likelihood=None,
under_target_cost=None, under_target_cost=None,
under_target_likelihood=None, under_target_likelihood=None,
lowest_likelihood=min_likelihood,
) )
return result return result

6
poetry.lock generated
View File

@ -461,11 +461,11 @@ testing = ["argcomplete", "attrs (>=19.2.0)", "hypothesis (>=3.56)", "mock", "no
[[package]] [[package]]
name = "pytest-cov" name = "pytest-cov"
version = "3.0.0" version = "4.1.0"
description = "Pytest plugin for measuring coverage." description = "Pytest plugin for measuring coverage."
category = "dev" category = "dev"
optional = false optional = false
python-versions = ">=3.6" python-versions = ">=3.7"
[package.dependencies] [package.dependencies]
coverage = {version = ">=5.2.1", extras = ["toml"]} coverage = {version = ">=5.2.1", extras = ["toml"]}
@ -730,7 +730,7 @@ testing = ["pytest (>=6)", "pytest-checkdocs (>=2.4)", "flake8 (<5)", "pytest-co
[metadata] [metadata]
lock-version = "1.1" lock-version = "1.1"
python-versions = ">=3.8.1,<3.10" python-versions = ">=3.8.1,<3.10"
content-hash = "0161af7edf18c16819f1ce083ab491c17c9809f2770219725131451b1a16a970" content-hash = "111972d04616ce3ddfc9039a0b38c7eb7c4a41f10390139b27e958aedac7e979"
[metadata.files] [metadata.files]
black = [] black = []

View File

@ -1,6 +1,6 @@
[tool.poetry] [tool.poetry]
name = "deepdog" name = "deepdog"
version = "0.7.2" version = "0.7.3"
description = "" description = ""
authors = ["Deepak Mallubhotla <dmallubhotla+github@gmail.com>"] authors = ["Deepak Mallubhotla <dmallubhotla+github@gmail.com>"]
@ -13,8 +13,8 @@ scipy = "1.10"
[tool.poetry.dev-dependencies] [tool.poetry.dev-dependencies]
pytest = ">=6" pytest = ">=6"
flake8 = "^4.0.1" flake8 = "^4.0.1"
pytest-cov = "^3.0.0" pytest-cov = "^4.1.0"
mypy = "^0.971" mypy = "^1.4"
python-semantic-release = "^7.24.0" python-semantic-release = "^7.24.0"
black = "^22.3.0" black = "^22.3.0"