Compare commits

...

17 Commits

Author SHA1 Message Date
c288e42e5f chore(deps): update dependency numpy to v1.26.4
Some checks failed
renovate/artifacts Artifact file update failure
gitea-physics/deepdog/pipeline/pr-master There was a failure building this commit
2024-05-21 01:30:41 +00:00
9cfd484d7c
chore(release): 1.3.0
All checks were successful
gitea-physics/deepdog/pipeline/tag This commit looks good
gitea-physics/deepdog/pipeline/head This commit looks good
2024-05-19 22:13:39 -05:00
09fad2e102
feat: improve initial cost calculation to allow multiprocessing, adds ability to specify a number of levels to do with direct mc instead of subset simulation 2024-05-19 22:11:50 -05:00
24ac65bf9c
fix: fix seeding to avoid recreating seed combinations across multi runs 2024-05-19 22:10:40 -05:00
8fbae32111
doc: some commenting and logging changes 2024-05-19 22:09:52 -05:00
b1c01b25c8
fix: Adds ugly hack for stdevs for this uniform range to multiply by root3, proper fix would be in pdme 2024-05-19 22:08:44 -05:00
a14d9834e5
doc: note on refactoring for subset sim probs 2024-05-19 22:01:42 -05:00
8d04803eb3
fmt: formatting, nicer log, removing comment 2024-05-19 02:29:59 -05:00
92b49fce7c
feat: add multi run to wrap multi model and repeat runs 2024-05-19 02:27:11 -05:00
8845b2875f
feat: adds a filter that works with cost functions 2024-05-19 02:26:00 -05:00
72791f2d0f
deps: update pdme 2024-05-19 02:25:29 -05:00
d258cfbec7
chore(release): 1.2.1
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2024-05-11 20:51:05 -05:00
b3bf4cde97
perf: precompile the magic regexes for probs parsing 2024-05-11 20:49:45 -05:00
60f29b0b2f
perf: avoid recalculating product dict in indexifier to improve performance for probs 2024-05-11 20:49:26 -05:00
093a3fb5c4
chore(release): 1.2.0
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2024-05-08 22:24:28 -05:00
dc1d2d45a3
feat: adds additional matching regexes
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-05-08 22:23:57 -05:00
f0e2fa3da9
feat: adds magnitude enabled parsing option 2024-05-03 10:44:06 -05:00
12 changed files with 655 additions and 178 deletions

View File

@ -2,6 +2,31 @@
All notable changes to this project will be documented in this file. See [standard-version](https://github.com/conventional-changelog/standard-version) for commit guidelines.
## [1.3.0](https://gitea.deepak.science:2222/physics/deepdog/compare/1.2.1...1.3.0) (2024-05-20)
### Features
* add multi run to wrap multi model and repeat runs ([92b49fc](https://gitea.deepak.science:2222/physics/deepdog/commit/92b49fce7c86f14484deb1c4aaaa810a6f69c08a))
* adds a filter that works with cost functions ([8845b28](https://gitea.deepak.science:2222/physics/deepdog/commit/8845b2875f2c91c91dd3988fabda26400c59b2d7))
* improve initial cost calculation to allow multiprocessing, adds ability to specify a number of levels to do with direct mc instead of subset simulation ([09fad2e](https://gitea.deepak.science:2222/physics/deepdog/commit/09fad2e1024d9237a6a4f7931f51cb4c84b83bf8))
### Bug Fixes
* Adds ugly hack for stdevs for this uniform range to multiply by root3, proper fix would be in pdme ([b1c01b2](https://gitea.deepak.science:2222/physics/deepdog/commit/b1c01b25c8f2c3947be23f5b2c656c37437dab17))
* fix seeding to avoid recreating seed combinations across multi runs ([24ac65b](https://gitea.deepak.science:2222/physics/deepdog/commit/24ac65bf9c74c454fec826ca9de640fe095f5a17))
### [1.2.1](https://gitea.deepak.science:2222/physics/deepdog/compare/1.2.0...1.2.1) (2024-05-12)
## [1.2.0](https://gitea.deepak.science:2222/physics/deepdog/compare/1.1.0...1.2.0) (2024-05-09)
### Features
* adds additional matching regexes ([dc1d2d4](https://gitea.deepak.science:2222/physics/deepdog/commit/dc1d2d45a3e631c5efccce80f8a24fa87c6089e0))
* adds magnitude enabled parsing option ([f0e2fa3](https://gitea.deepak.science:2222/physics/deepdog/commit/f0e2fa3da9f5a5136908d691137a904fda4e3a9a))
## [1.1.0](https://gitea.deepak.science:2222/physics/deepdog/compare/1.0.1...1.1.0) (2024-05-03)

View File

@ -72,6 +72,7 @@ def main(args: argparse.Namespace):
for f in tqdm.tqdm(out_files, desc="reading files", leave=False)
]
# Refactor here to allow for arbitrary likelihood file sources
_logger.info("building uncoalesced dict")
uncoalesced_dict = deepdog.cli.probs.dicts.build_model_dict(parsed_output_files)

View File

@ -0,0 +1,24 @@
from deepdog.direct_monte_carlo.direct_mc import DirectMonteCarloFilter
from typing import Callable
import numpy
class CostFunctionTargetFilter(DirectMonteCarloFilter):
def __init__(
self,
cost_function: Callable[[numpy.ndarray], numpy.ndarray],
target_cost: float,
):
"""
Filters dipoles by cost, only leaving dipoles with cost below target_cost
"""
self.cost_function = cost_function
self.target_cost = target_cost
def filter_samples(self, samples: numpy.ndarray) -> numpy.ndarray:
current_sample = samples
costs = self.cost_function(current_sample)
current_sample = current_sample[costs < self.target_cost]
return current_sample

View File

@ -31,10 +31,10 @@ class Indexifier:
def __init__(self, list_dict: typing.Dict[str, typing.Sequence]):
self.dict = list_dict
self.product_dict = _dict_product(self.dict)
def indexify(self, n: int) -> typing.Dict[str, typing.Any]:
product_dict = _dict_product(self.dict)
return product_dict[n]
return self.product_dict[n]
def _indexify_indices(self, n: int) -> typing.Sequence[int]:
"""

View File

@ -8,17 +8,30 @@ import csv
_logger = logging.getLogger(__name__)
FILENAME_REGEX = r"(?P<timestamp>\d{8}-\d{6})-(?P<filename_slug>.*)\.realdata\.fast_filter\.bayesrun\.csv"
FILENAME_REGEX = re.compile(
r"(?P<timestamp>\d{8}-\d{6})-(?P<filename_slug>.*)\.realdata\.fast_filter\.bayesrun\.csv"
)
MODEL_REGEXES = [
r"geom_(?P<xmin>-?\d+)_(?P<xmax>-?\d+)_(?P<ymin>-?\d+)_(?P<ymax>-?\d+)_(?P<zmin>-?\d+)_(?P<zmax>-?\d+)-orientation_(?P<orientation>free|fixedxy|fixedz)-dipole_count_(?P<avg_filled>\d+)_(?P<field_name>\w*)"
re.compile(pattern)
for pattern in [
r"geom_(?P<xmin>-?\d+)_(?P<xmax>-?\d+)_(?P<ymin>-?\d+)_(?P<ymax>-?\d+)_(?P<zmin>-?\d+)_(?P<zmax>-?\d+)-orientation_(?P<orientation>free|fixedxy|fixedz)-dipole_count_(?P<avg_filled>\d+)_(?P<field_name>\w*)",
r"geom_(?P<xmin>-?\d+)_(?P<xmax>-?\d+)_(?P<ymin>-?\d+)_(?P<ymax>-?\d+)_(?P<zmin>-?\d+)_(?P<zmax>-?\d+)-magnitude_(?P<log_magnitude>\d*\.?\d+)-orientation_(?P<orientation>free|fixedxy|fixedz)-dipole_count_(?P<avg_filled>\d+)_(?P<field_name>\w*)",
r"geom_(?P<xmin>-?\d*\.?\d+)_(?P<xmax>-?\d*\.?\d+)_(?P<ymin>-?\d*\.?\d+)_(?P<ymax>-?\d*\.?\d+)_(?P<zmin>-?\d*\.?\d+)_(?P<zmax>-?\d*\.?\d+)-magnitude_(?P<log_magnitude>\d*\.?\d+)-orientation_(?P<orientation>free|fixedxy|fixedz)-dipole_count_(?P<avg_filled>\d+)_(?P<field_name>\w*)",
]
]
FILE_SLUG_REGEXES = [
r"mock_tarucha-(?P<job_index>\d+)",
r"(?:(?P<mock>mock)_)?tarucha(?:_(?P<tarucha_run_id>\d+))?-(?P<job_index>\d+)",
re.compile(pattern)
for pattern in [
r"(?P<tag>\w+)-(?P<job_index>\d+)",
r"mock_tarucha-(?P<job_index>\d+)",
r"(?:(?P<mock>mock)_)?tarucha(?:_(?P<tarucha_run_id>\d+))?-(?P<job_index>\d+)",
]
]
SIMPLE_TAG_REGEX = re.compile(r"\w+-\d+")
@dataclasses.dataclass
class BayesrunOutputFilename:
@ -27,7 +40,6 @@ class BayesrunOutputFilename:
path: pathlib.Path
@dataclasses.dataclass
class BayesrunColumnParsed:
"""
class for parsing a bayesrun while pulling certain special fields out
@ -38,10 +50,21 @@ class BayesrunColumnParsed:
self.model_field_dict = {
k: v for k, v in groupdict.items() if k != "field_name"
}
self._groupdict_str = repr(groupdict)
def __str__(self):
return f"BayesrunColumnParsed[{self.column_field}: {self.model_field_dict}]"
def __repr__(self):
return f"BayesrunColumnParsed({self._groupdict_str})"
def __eq__(self, other):
if isinstance(other, BayesrunColumnParsed):
return (self.column_field == other.column_field) and (
self.model_field_dict == other.model_field_dict
)
return NotImplemented
@dataclasses.dataclass
class BayesrunModelResult:
@ -73,7 +96,7 @@ def _parse_bayesrun_column(
Returns the groupdict for the first match, or None if no match found.
"""
for pattern in MODEL_REGEXES:
match = re.match(pattern, column)
match = pattern.match(column)
if match:
return BayesrunColumnParsed(match.groupdict())
else:
@ -112,7 +135,7 @@ def _parse_bayesrun_row(
def _parse_output_filename(file: pathlib.Path) -> BayesrunOutputFilename:
filename = file.name
match = re.match(FILENAME_REGEX, filename)
match = FILENAME_REGEX.match(filename)
if not match:
raise ValueError(f"{filename} was not a valid bayesrun output")
groups = match.groupdict()
@ -123,7 +146,7 @@ def _parse_output_filename(file: pathlib.Path) -> BayesrunOutputFilename:
def _parse_file_slug(slug: str) -> typing.Optional[typing.Dict[str, str]]:
for pattern in FILE_SLUG_REGEXES:
match = re.match(pattern, slug)
match = pattern.match(slug)
if match:
return match.groupdict()
else:

View File

@ -1,9 +1,11 @@
import logging
import multiprocessing
import numpy
import pdme.measurement
import pdme.measurement.input_types
import pdme.model
import pdme.subspace_simulation
from typing import Sequence, Tuple, Optional
from typing import Sequence, Tuple, Optional, Callable, Union, List
from dataclasses import dataclass
@ -18,47 +20,63 @@ class SubsetSimulationResult:
under_target_cost: Optional[float]
under_target_likelihood: Optional[float]
lowest_likelihood: Optional[float]
messages: Sequence[str]
@dataclass
class MultiSubsetSimulationResult:
child_results: Sequence[SubsetSimulationResult]
model_name: str
estimated_likelihood: float
arithmetic_mean_estimated_likelihood: float
num_children: int
num_finished_children: int
clean_estimate: bool
class SubsetSimulation:
def __init__(
self,
model_name_pair,
dot_inputs,
actual_measurements: Sequence[pdme.measurement.DotMeasurement],
# actual_measurements: Sequence[pdme.measurement.DotMeasurement],
cost_function: Callable[[numpy.ndarray], numpy.ndarray],
n_c: int,
n_s: int,
m_max: int,
target_cost: Optional[float] = None,
level_0_seed: int = 200,
mcmc_seed: int = 20,
level_0_seed: Union[int, Sequence[int]] = 200,
mcmc_seed: Union[int, Sequence[int]] = 20,
use_adaptive_steps=True,
default_phi_step=0.01,
default_theta_step=0.01,
default_r_step=0.01,
default_w_log_step=0.01,
default_upper_w_log_step=4,
num_initial_dmc_gens=1,
keep_probs_list=True,
dump_last_generation_to_file=False,
initial_cost_chunk_size=100,
initial_cost_multiprocess=True,
cap_core_count: int = 0, # 0 means cap at num cores - 1
):
name, model = model_name_pair
self.model_name = name
self.model = model
_logger.info(f"got model {self.model_name}")
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
dot_inputs
)
# dot_inputs = [(meas.r, meas.f) for meas in actual_measurements]
# self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
# dot_inputs
# )
# _logger.debug(f"actual measurements: {actual_measurements}")
self.actual_measurement_array = numpy.array([m.v for m in actual_measurements])
# self.actual_measurement_array = numpy.array([m.v for m in actual_measurements])
def cost_function_to_use(dipoles_to_test):
return pdme.subspace_simulation.proportional_costs_vs_actual_measurement(
self.dot_inputs_array, self.actual_measurement_array, dipoles_to_test
)
# def cost_function_to_use(dipoles_to_test):
# return pdme.subspace_simulation.proportional_costs_vs_actual_measurement(
# self.dot_inputs_array, self.actual_measurement_array, dipoles_to_test
# )
self.cost_function_to_use = cost_function_to_use
self.cost_function_to_use = cost_function
self.n_c = n_c
self.n_s = n_s
@ -68,16 +86,25 @@ class SubsetSimulation:
self.mcmc_seed = mcmc_seed
self.use_adaptive_steps = use_adaptive_steps
self.default_phi_step = default_phi_step
self.default_phi_step = (
default_phi_step * 1.73
) # this is a hack to fix a missing sqrt 3 in the proposal function code.
self.default_theta_step = default_theta_step
self.default_r_step = default_r_step
self.default_w_log_step = default_w_log_step
self.default_r_step = (
default_r_step * 1.73
) # this is a hack to fix a missing sqrt 3 in the proposal function code.
self.default_w_log_step = (
default_w_log_step * 1.73
) # this is a hack to fix a missing sqrt 3 in the proposal function code.
self.default_upper_w_log_step = default_upper_w_log_step
_logger.info("using params:")
_logger.info(f"\tn_c: {self.n_c}")
_logger.info(f"\tn_s: {self.n_s}")
_logger.info(f"\tm: {self.m_max}")
_logger.info(f"\t{num_initial_dmc_gens=}")
_logger.info(f"\t{mcmc_seed=}")
_logger.info(f"\t{level_0_seed=}")
_logger.info("let's do level 0...")
self.target_cost = target_cost
@ -87,158 +114,176 @@ class SubsetSimulation:
self.dump_last_generations = dump_last_generation_to_file
self.initial_cost_chunk_size = initial_cost_chunk_size
self.initial_cost_multiprocess = initial_cost_multiprocess
self.cap_core_count = cap_core_count
self.num_dmc_gens = num_initial_dmc_gens
def _single_chain_gen(self, args: Tuple):
threshold_cost, stdevs, rng_seed, (c, s) = args
rng = numpy.random.default_rng(rng_seed)
return self.model.get_repeat_counting_mcmc_chain(
s,
self.cost_function_to_use,
self.n_s,
threshold_cost,
stdevs,
initial_cost=c,
rng_arg=rng,
)
def execute(self) -> SubsetSimulationResult:
probs_list = []
output_messages = []
# If we have n_s = 10 and n_c = 100, then our big N = 1000 and p = 1/10
# The DMC stage would normally generate 1000, then pick the best 100 and start counting prob = p/10.
# Let's say we want our DMC stage to go down to level 2.
# Then we need to filter out p^2, so our initial has to be N_0 = N / p = n_c * n_s^2
initial_dmc_n = self.n_c * (self.n_s**self.num_dmc_gens)
initial_level = (
self.num_dmc_gens - 1
) # This is perfunctory but let's label it here really explicitly
_logger.info(f"Generating {initial_dmc_n} for DMC stage")
sample_dipoles = self.model.get_monte_carlo_dipole_inputs(
self.n_c * self.n_s,
initial_dmc_n,
-1,
rng_to_use=numpy.random.default_rng(self.level_0_seed),
)
# _logger.debug(sample_dipoles)
# _logger.debug(sample_dipoles.shape)
raw_costs = []
_logger.debug("Finished dipole generation")
_logger.debug(
f"Using iterated cost function thing with chunk size {self.initial_cost_chunk_size}"
f"Using iterated multiprocessing cost function thing with chunk size {self.initial_cost_chunk_size}"
)
for x in range(0, len(sample_dipoles), self.initial_cost_chunk_size):
_logger.debug(f"doing chunk {x}")
raw_costs.extend(
self.cost_function_to_use(
sample_dipoles[x : x + self.initial_cost_chunk_size]
)
# core count etc. logic here
core_count = multiprocessing.cpu_count() - 1 or 1
if (self.cap_core_count >= 1) and (self.cap_core_count < core_count):
core_count = self.cap_core_count
_logger.info(f"Using {core_count} cores")
with multiprocessing.Pool(core_count) as pool:
# Do the initial DMC calculation in a multiprocessing
chunks = numpy.array_split(
sample_dipoles,
range(
self.initial_cost_chunk_size,
len(sample_dipoles),
self.initial_cost_chunk_size,
),
)
costs = numpy.array(raw_costs)
if self.initial_cost_multiprocess:
_logger.debug("Multiprocessing initial costs")
raw_costs = pool.map(self.cost_function_to_use, chunks)
else:
_logger.debug("Single process initial costs")
raw_costs = []
for chunk_idx, chunk in enumerate(chunks):
_logger.debug(f"doing chunk #{chunk_idx}")
raw_costs.append(self.cost_function_to_use(chunk))
costs = numpy.concatenate(raw_costs)
_logger.debug("finished initial dmc cost calculation")
# _logger.debug(f"costs: {costs}")
sorted_indexes = costs.argsort()[::-1]
_logger.debug(f"costs: {costs}")
sorted_indexes = costs.argsort()[::-1]
# _logger.debug(costs[sorted_indexes])
# _logger.debug(sample_dipoles[sorted_indexes])
_logger.debug(costs[sorted_indexes])
_logger.debug(sample_dipoles[sorted_indexes])
sorted_costs = costs[sorted_indexes]
sorted_dipoles = sample_dipoles[sorted_indexes]
sorted_costs = costs[sorted_indexes]
sorted_dipoles = sample_dipoles[sorted_indexes]
threshold_cost = sorted_costs[-self.n_c]
all_dipoles = numpy.array(
[
pdme.subspace_simulation.sort_array_of_dipoles_by_frequency(samp)
for samp in sorted_dipoles
]
)
all_chains = list(zip(sorted_costs, all_dipoles))
mcmc_rng = numpy.random.default_rng(self.mcmc_seed)
for i in range(self.m_max):
next_seeds = all_chains[-self.n_c :]
if self.dump_last_generations:
_logger.info("writing out csv file")
next_dipoles_seed_dipoles = numpy.array([n[1] for n in next_seeds])
for n in range(self.model.n):
_logger.info(f"{next_dipoles_seed_dipoles[:, n].shape}")
numpy.savetxt(
f"generation_{self.n_c}_{self.n_s}_{i}_dipole_{n}.csv",
next_dipoles_seed_dipoles[:, n],
delimiter=",",
)
next_seeds_as_array = numpy.array([s for _, s in next_seeds])
stdevs = self.get_stdevs_from_arrays(next_seeds_as_array)
_logger.info(f"got stdevs: {stdevs.stdevs}")
all_long_chains = []
for seed_index, (c, s) in enumerate(
next_seeds[:: len(next_seeds) // 20]
):
# chain = mcmc(s, threshold_cost, n_s, model, dot_inputs_array, actual_measurement_array, mcmc_rng, curr_cost=c, stdevs=stdevs)
# until new version gotta do
_logger.debug(f"\t{seed_index}: doing long chain on the next seed")
long_chain = self.model.get_mcmc_chain(
s,
self.cost_function_to_use,
1000,
threshold_cost,
stdevs,
initial_cost=c,
rng_arg=mcmc_rng,
)
for _, chained in long_chain:
all_long_chains.append(chained)
all_long_chains_array = numpy.array(all_long_chains)
for n in range(self.model.n):
_logger.info(f"{all_long_chains_array[:, n].shape}")
numpy.savetxt(
f"long_chain_generation_{self.n_c}_{self.n_s}_{i}_dipole_{n}.csv",
all_long_chains_array[:, n],
delimiter=",",
)
if self.keep_probs_list:
for cost_index, cost_chain in enumerate(all_chains[: -self.n_c]):
probs_list.append(
(
((self.n_c * self.n_s - cost_index) / (self.n_c * self.n_s))
/ (self.n_s ** (i)),
cost_chain[0],
i + 1,
)
)
next_seeds_as_array = numpy.array([s for _, s in next_seeds])
stdevs = self.get_stdevs_from_arrays(next_seeds_as_array)
_logger.info(f"got stdevs: {stdevs.stdevs}")
_logger.debug("Starting the MCMC")
all_chains = []
for seed_index, (c, s) in enumerate(next_seeds):
# chain = mcmc(s, threshold_cost, n_s, model, dot_inputs_array, actual_measurement_array, mcmc_rng, curr_cost=c, stdevs=stdevs)
# until new version gotta do
all_dipoles = numpy.array(
[
pdme.subspace_simulation.sort_array_of_dipoles_by_frequency(samp)
for samp in sorted_dipoles
]
)
all_chains = list(zip(sorted_costs, all_dipoles))
for dmc_level in range(initial_level):
# if initial level is 1, we want to print out what the level 0 threshold would have been?
_logger.debug(f"Get the pseudo statistics for level {dmc_level}")
_logger.debug(f"Whole chain has length {len(all_chains)}")
pseudo_threshold_index = -(
self.n_c * (self.n_s ** (self.num_dmc_gens - dmc_level - 1))
)
_logger.debug(
f"\t{seed_index}: getting another chain from the next seed"
f"Have a pseudo_threshold_index of {pseudo_threshold_index}, or {len(all_chains) + pseudo_threshold_index}"
)
chain = self.model.get_mcmc_chain(
s,
self.cost_function_to_use,
self.n_s,
threshold_cost,
stdevs,
initial_cost=c,
rng_arg=mcmc_rng,
pseudo_threshold_cost = all_chains[-pseudo_threshold_index][0]
_logger.info(
f"Pseudo-level {dmc_level} threshold cost {pseudo_threshold_cost}, at P = (1 / {self.n_s})^{dmc_level + 1}"
)
for cost, chained in chain:
try:
filtered_cost = cost[0]
except (IndexError, TypeError):
filtered_cost = cost
all_chains.append((filtered_cost, chained))
_logger.debug("finished mcmc")
# _logger.debug(all_chains)
all_chains = all_chains[pseudo_threshold_index:]
all_chains.sort(key=lambda c: c[0], reverse=True)
_logger.debug("finished sorting all_chains")
long_mcmc_rng = numpy.random.default_rng(self.mcmc_seed)
mcmc_rng_seed_sequence = numpy.random.SeedSequence(self.mcmc_seed)
threshold_cost = all_chains[-self.n_c][0]
_logger.info(
f"current threshold cost: {threshold_cost}, at P = (1 / {self.n_s})^{i + 1}"
f"Finishing DMC threshold cost {threshold_cost} at level {initial_level}, at P = (1 / {self.n_s})^{initial_level + 1}"
)
if (self.target_cost is not None) and (threshold_cost < self.target_cost):
_logger.info(
f"got a threshold cost {threshold_cost}, less than {self.target_cost}. will leave early"
)
_logger.debug(f"Executing the MCMC with chains of length {len(all_chains)}")
cost_list = [c[0] for c in all_chains]
over_index = reverse_bisect_right(cost_list, self.target_cost)
# Now we move on to the MCMC part of the algorithm
shorter_probs_list = []
for cost_index, cost_chain in enumerate(all_chains):
if self.keep_probs_list:
# This is important, we want to allow some extra initial levels so we need to account for that here!
for i in range(self.num_dmc_gens, self.m_max):
_logger.info(f"Starting level {i}")
next_seeds = all_chains[-self.n_c :]
if self.dump_last_generations:
_logger.info("writing out csv file")
next_dipoles_seed_dipoles = numpy.array([n[1] for n in next_seeds])
for n in range(self.model.n):
_logger.info(f"{next_dipoles_seed_dipoles[:, n].shape}")
numpy.savetxt(
f"generation_{self.n_c}_{self.n_s}_{i}_dipole_{n}.csv",
next_dipoles_seed_dipoles[:, n],
delimiter=",",
)
next_seeds_as_array = numpy.array([s for _, s in next_seeds])
stdevs = self.get_stdevs_from_arrays(next_seeds_as_array)
_logger.info(f"got stdevs: {stdevs.stdevs}")
all_long_chains = []
for seed_index, (c, s) in enumerate(
next_seeds[:: len(next_seeds) // 20]
):
# chain = mcmc(s, threshold_cost, n_s, model, dot_inputs_array, actual_measurement_array, mcmc_rng, curr_cost=c, stdevs=stdevs)
# until new version gotta do
_logger.debug(
f"\t{seed_index}: doing long chain on the next seed"
)
long_chain = self.model.get_mcmc_chain(
s,
self.cost_function_to_use,
1000,
threshold_cost,
stdevs,
initial_cost=c,
rng_arg=long_mcmc_rng,
)
for _, chained in long_chain:
all_long_chains.append(chained)
all_long_chains_array = numpy.array(all_long_chains)
for n in range(self.model.n):
_logger.info(f"{all_long_chains_array[:, n].shape}")
numpy.savetxt(
f"long_chain_generation_{self.n_c}_{self.n_s}_{i}_dipole_{n}.csv",
all_long_chains_array[:, n],
delimiter=",",
)
if self.keep_probs_list:
for cost_index, cost_chain in enumerate(all_chains[: -self.n_c]):
probs_list.append(
(
(
@ -250,26 +295,105 @@ class SubsetSimulation:
i + 1,
)
)
shorter_probs_list.append(
(
cost_chain[0],
((self.n_c * self.n_s - cost_index) / (self.n_c * self.n_s))
/ (self.n_s ** (i)),
)
)
# _logger.info(shorter_probs_list)
result = SubsetSimulationResult(
probs_list=probs_list,
over_target_cost=shorter_probs_list[over_index - 1][0],
over_target_likelihood=shorter_probs_list[over_index - 1][1],
under_target_cost=shorter_probs_list[over_index][0],
under_target_likelihood=shorter_probs_list[over_index][1],
lowest_likelihood=shorter_probs_list[-1][1],
)
return result
# _logger.debug([c[0] for c in all_chains[-n_c:]])
_logger.info(f"doing level {i + 1}")
next_seeds_as_array = numpy.array([s for _, s in next_seeds])
stdevs = self.get_stdevs_from_arrays(next_seeds_as_array)
_logger.debug(f"got stdevs, begin: {stdevs.stdevs[:10]}")
_logger.debug("Starting the MCMC")
all_chains = []
seeds = mcmc_rng_seed_sequence.spawn(len(next_seeds))
pool_results = pool.imap_unordered(
self._single_chain_gen,
[
(threshold_cost, stdevs, rng_seed, test_seed)
for rng_seed, test_seed in zip(seeds, next_seeds)
],
chunksize=50,
)
# count for ergodicity analysis
samples_generated = 0
samples_rejected = 0
for rejected_count, chain in pool_results:
for cost, chained in chain:
try:
filtered_cost = cost[0]
except (IndexError, TypeError):
filtered_cost = cost
all_chains.append((filtered_cost, chained))
samples_generated += self.n_s
samples_rejected += rejected_count
_logger.debug("finished mcmc")
_logger.debug(f"{samples_rejected=} out of {samples_generated=}")
if samples_rejected * 2 > samples_generated:
reject_ratio = samples_rejected / samples_generated
rejectionmessage = f"On level {i}, rejected {samples_rejected} out of {samples_generated}, {reject_ratio=} is too high and may indicate ergodicity problems"
output_messages.append(rejectionmessage)
_logger.warning(rejectionmessage)
# _logger.debug(all_chains)
all_chains.sort(key=lambda c: c[0], reverse=True)
_logger.debug("finished sorting all_chains")
threshold_cost = all_chains[-self.n_c][0]
_logger.info(
f"current threshold cost: {threshold_cost}, at P = (1 / {self.n_s})^{i + 1}"
)
if (self.target_cost is not None) and (
threshold_cost < self.target_cost
):
_logger.info(
f"got a threshold cost {threshold_cost}, less than {self.target_cost}. will leave early"
)
cost_list = [c[0] for c in all_chains]
over_index = reverse_bisect_right(cost_list, self.target_cost)
winner = all_chains[over_index][1]
_logger.info(f"Winner obtained: {winner}")
shorter_probs_list = []
for cost_index, cost_chain in enumerate(all_chains):
if self.keep_probs_list:
probs_list.append(
(
(
(self.n_c * self.n_s - cost_index)
/ (self.n_c * self.n_s)
)
/ (self.n_s ** (i)),
cost_chain[0],
i + 1,
)
)
shorter_probs_list.append(
(
cost_chain[0],
(
(self.n_c * self.n_s - cost_index)
/ (self.n_c * self.n_s)
)
/ (self.n_s ** (i)),
)
)
# _logger.info(shorter_probs_list)
result = SubsetSimulationResult(
probs_list=probs_list,
over_target_cost=shorter_probs_list[over_index - 1][0],
over_target_likelihood=shorter_probs_list[over_index - 1][1],
under_target_cost=shorter_probs_list[over_index][0],
under_target_likelihood=shorter_probs_list[over_index][1],
lowest_likelihood=shorter_probs_list[-1][1],
messages=output_messages,
)
return result
# _logger.debug([c[0] for c in all_chains[-n_c:]])
_logger.info(f"doing level {i + 1}")
if self.keep_probs_list:
for cost_index, cost_chain in enumerate(all_chains):
@ -285,8 +409,8 @@ class SubsetSimulation:
_logger.info(
f"final threshold cost: {threshold_cost}, at P = (1 / {self.n_s})^{self.m_max + 1}"
)
for a in all_chains[-10:]:
_logger.info(a)
# for a in all_chains[-10:]:
# _logger.info(a)
# for prob, prob_cost in probs_list:
# _logger.info(f"\t{prob}: {prob_cost}")
probs_list.sort(key=lambda c: c[0], reverse=True)
@ -300,6 +424,7 @@ class SubsetSimulation:
under_target_cost=None,
under_target_likelihood=None,
lowest_likelihood=min_likelihood,
messages=output_messages,
)
return result
@ -358,6 +483,116 @@ class SubsetSimulation:
return stdevs
class MultiSubsetSimulations:
def __init__(
self,
model_name_pairs: Sequence[Tuple[str, pdme.model.DipoleModel]],
# actual_measurements: Sequence[pdme.measurement.DotMeasurement],
cost_function: Callable[[numpy.ndarray], numpy.ndarray],
num_runs: int,
n_c: int,
n_s: int,
m_max: int,
target_cost: float,
num_initial_dmc_gens: int = 1,
level_0_seed_seed: int = 200,
mcmc_seed_seed: int = 20,
use_adaptive_steps=True,
default_phi_step=0.01,
default_theta_step=0.01,
default_r_step=0.01,
default_w_log_step=0.01,
default_upper_w_log_step=4,
initial_cost_chunk_size=100,
cap_core_count: int = 0, # 0 means cap at num cores - 1
):
self.model_name_pairs = model_name_pairs
self.cost_function = cost_function
self.num_runs = num_runs
self.n_c = n_c
self.n_s = n_s
self.m_max = m_max
self.target_cost = target_cost # This is not optional here!
self.num_dmc_gens = num_initial_dmc_gens
self.level_0_seed_seed = level_0_seed_seed
self.mcmc_seed_seed = mcmc_seed_seed
self.use_adaptive_steps = use_adaptive_steps
self.default_phi_step = default_phi_step
self.default_theta_step = default_theta_step
self.default_r_step = default_r_step
self.default_w_log_step = default_w_log_step
self.default_upper_w_log_step = default_upper_w_log_step
self.initial_cost_chunk_size = initial_cost_chunk_size
self.cap_core_count = cap_core_count
def execute(self) -> Sequence[MultiSubsetSimulationResult]:
output: List[MultiSubsetSimulationResult] = []
for model_index, model_name_pair in enumerate(self.model_name_pairs):
ss_results = [
SubsetSimulation(
model_name_pair,
self.cost_function,
self.n_c,
self.n_s,
self.m_max,
self.target_cost,
num_initial_dmc_gens=self.num_dmc_gens,
level_0_seed=[model_index, run_index, self.level_0_seed_seed],
mcmc_seed=[model_index, run_index, self.mcmc_seed_seed],
use_adaptive_steps=self.use_adaptive_steps,
default_phi_step=self.default_phi_step,
default_theta_step=self.default_theta_step,
default_r_step=self.default_r_step,
default_w_log_step=self.default_w_log_step,
default_upper_w_log_step=self.default_upper_w_log_step,
keep_probs_list=False,
dump_last_generation_to_file=False,
initial_cost_chunk_size=self.initial_cost_chunk_size,
cap_core_count=self.cap_core_count,
).execute()
for run_index in range(self.num_runs)
]
output.append(coalesce_ss_results(model_name_pair[0], ss_results))
return output
def coalesce_ss_results(
model_name: str, results: Sequence[SubsetSimulationResult]
) -> MultiSubsetSimulationResult:
num_finished = sum(1 for res in results if res.under_target_likelihood is not None)
estimated_likelihoods = numpy.array(
[
res.under_target_likelihood
if res.under_target_likelihood is not None
else res.lowest_likelihood
for res in results
]
)
_logger.info(estimated_likelihoods)
geometric_mean_estimated_likelihoods = numpy.exp(
numpy.log(estimated_likelihoods).mean()
)
_logger.info(geometric_mean_estimated_likelihoods)
arithmetic_mean_estimated_likelihoods = estimated_likelihoods.mean()
result = MultiSubsetSimulationResult(
child_results=results,
model_name=model_name,
estimated_likelihood=geometric_mean_estimated_likelihoods,
arithmetic_mean_estimated_likelihood=arithmetic_mean_estimated_likelihoods,
num_children=len(results),
num_finished_children=num_finished,
clean_estimate=num_finished == len(results),
)
return result
def reverse_bisect_right(a, x, lo=0, hi=None):
"""Return the index where to insert item x in list a, assuming a is sorted in descending order.

8
poetry.lock generated
View File

@ -786,13 +786,13 @@ files = [
[[package]]
name = "pdme"
version = "1.2.0"
version = "1.5.0"
description = "Python dipole model evaluator"
optional = false
python-versions = "<3.10,>=3.8.1"
files = [
{file = "pdme-1.2.0-py3-none-any.whl", hash = "sha256:602710a053f22921b4adbc03d46d284149fe2367a65455cde56608708e01c84b"},
{file = "pdme-1.2.0.tar.gz", hash = "sha256:412806d7ae384c048515e0f2cba70252778bf153800829a1d3265a0596872263"},
{file = "pdme-1.5.0-py3-none-any.whl", hash = "sha256:1b4fa30ba98a336957b3029563552d73286a3a5f932809ac1330e65a1f61c363"},
{file = "pdme-1.5.0.tar.gz", hash = "sha256:cc0ac4ffab2994e08b4efde2991c6d9dccb2942c7e33c4be3b52e068366526d1"},
]
[package.dependencies]
@ -1275,4 +1275,4 @@ testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "p
[metadata]
lock-version = "2.0"
python-versions = ">=3.8.1,<3.10"
content-hash = "918b6736766a9c1b6732a56e1ef2e7a53241f2e25babb884881e49c299801fc9"
content-hash = "85114054176aa164964acea6fdc085581ee7fc2f94c1cd03ad77611b82e52c79"

View File

@ -1,13 +1,13 @@
[tool.poetry]
name = "deepdog"
version = "1.1.0"
version = "1.3.0"
description = ""
authors = ["Deepak Mallubhotla <dmallubhotla+github@gmail.com>"]
[tool.poetry.dependencies]
python = ">=3.8.1,<3.10"
pdme = "^1.2.0"
numpy = "1.22.3"
pdme = "^1.5.0"
numpy = "1.26.4"
scipy = "1.10"
tqdm = "^4.66.2"

View File

@ -0,0 +1,42 @@
import deepdog.direct_monte_carlo.cost_function_filter
import numpy
def test_px_cost_function_filter_example():
dipoles_1 = [
[1, 2, 3, 4, 5, 6, 7],
[2, 3, 2, 5, 4, 7, 6],
]
dipoles_2 = [
[15, 9, 8, 7, 6, 5, 3],
[30, 4, 4, 7, 3, 1, 4],
]
dipoleses = numpy.array([dipoles_1, dipoles_2])
def cost_function(dipoleses: numpy.ndarray) -> numpy.ndarray:
return dipoleses[:, :, 0].max(axis=-1)
expected_costs = numpy.array([2, 30])
numpy.testing.assert_array_equal(cost_function(dipoleses), expected_costs)
filter = deepdog.direct_monte_carlo.cost_function_filter.CostFunctionTargetFilter(
cost_function, 5
)
actual_filtered = filter.filter_samples(dipoleses)
expected_filtered = numpy.array([dipoles_1])
assert actual_filtered.size != 0
numpy.testing.assert_array_equal(actual_filtered, expected_filtered)
filter_stricter = (
deepdog.direct_monte_carlo.cost_function_filter.CostFunctionTargetFilter(
cost_function, 0.5
)
)
actual_filtered_stricter = filter_stricter.filter_samples(dipoleses)
assert actual_filtered_stricter.size == 0

View File

@ -7,6 +7,7 @@ def test_parse_groupdict():
)
parsed = deepdog.results._parse_bayesrun_column(example_column_name)
assert parsed is not None
expected = deepdog.results.BayesrunColumnParsed(
{
"xmin": "-20",
@ -23,6 +24,30 @@ def test_parse_groupdict():
assert parsed == expected
def test_parse_groupdict_with_magnitude():
example_column_name = (
"geom_-20_20_-10_10_0_5-magnitude_3.5-orientation_free-dipole_count_100_success"
)
parsed = deepdog.results._parse_bayesrun_column(example_column_name)
assert parsed is not None
expected = deepdog.results.BayesrunColumnParsed(
{
"xmin": "-20",
"xmax": "20",
"ymin": "-10",
"ymax": "10",
"zmin": "0",
"zmax": "5",
"orientation": "free",
"avg_filled": "100",
"log_magnitude": "3.5",
"field_name": "success",
}
)
assert parsed == expected
# def test_parse_no_match_column_name():
# parsed = deepdog.results.parse_bayesrun_column("There's nothing here")
# assert parsed is None

View File

@ -0,0 +1,10 @@
# serializer version: 1
# name: test_subset_simulation_multi_result_coalescing_easy_arithmetic
MultiSubsetSimulationResult(child_results=[SubsetSimulationResult(probs_list=(), over_target_cost=1, over_target_likelihood=1, under_target_cost=0.99, under_target_likelihood=0.8, lowest_likelihood=0.5, messages=[]), SubsetSimulationResult(probs_list=(), over_target_cost=1, over_target_likelihood=1, under_target_cost=0.99, under_target_likelihood=0.6, lowest_likelihood=0.01, messages=[])], model_name='test', estimated_likelihood=0.6928203230275509, arithmetic_mean_estimated_likelihood=0.7, num_children=2, num_finished_children=2, clean_estimate=True)
# ---
# name: test_subset_simulation_multi_result_coalescing_easy_geometric
MultiSubsetSimulationResult(child_results=[SubsetSimulationResult(probs_list=(), over_target_cost=1, over_target_likelihood=1, under_target_cost=0.99, under_target_likelihood=0.1, lowest_likelihood=0.5, messages=[]), SubsetSimulationResult(probs_list=(), over_target_cost=1, over_target_likelihood=1, under_target_cost=0.99, under_target_likelihood=0.001, lowest_likelihood=0.01, messages=[])], model_name='test', estimated_likelihood=0.010000000000000004, arithmetic_mean_estimated_likelihood=0.0505, num_children=2, num_finished_children=2, clean_estimate=True)
# ---
# name: test_subset_simulation_multi_result_coalescing_include_dirty
MultiSubsetSimulationResult(child_results=[SubsetSimulationResult(probs_list=(), over_target_cost=1, over_target_likelihood=1, under_target_cost=0.99, under_target_likelihood=0.8, lowest_likelihood=0.5, messages=[]), SubsetSimulationResult(probs_list=(), over_target_cost=1, over_target_likelihood=1, under_target_cost=0.99, under_target_likelihood=0.08, lowest_likelihood=0.01, messages=[]), SubsetSimulationResult(probs_list=(), over_target_cost=None, over_target_likelihood=None, under_target_cost=None, under_target_likelihood=None, lowest_likelihood=0.0001, messages=[])], model_name='test', estimated_likelihood=0.01856635533445112, arithmetic_mean_estimated_likelihood=0.29336666666666666, num_children=3, num_finished_children=2, clean_estimate=False)
# ---

View File

@ -0,0 +1,92 @@
import deepdog.subset_simulation.subset_simulation_impl as impl
import numpy
def test_subset_simulation_multi_result_coalescing_include_dirty(snapshot):
res1 = impl.SubsetSimulationResult(
probs_list=(),
over_target_cost=1,
over_target_likelihood=1,
under_target_cost=0.99,
under_target_likelihood=0.8,
lowest_likelihood=0.5,
messages=[],
)
res2 = impl.SubsetSimulationResult(
probs_list=(),
over_target_cost=1,
over_target_likelihood=1,
under_target_cost=0.99,
under_target_likelihood=0.08,
lowest_likelihood=0.01,
messages=[],
)
res3 = impl.SubsetSimulationResult(
probs_list=(),
over_target_cost=None,
over_target_likelihood=None,
under_target_cost=None,
under_target_likelihood=None,
lowest_likelihood=0.0001,
messages=[],
)
combined = impl.coalesce_ss_results("test", [res1, res2, res3])
assert combined == snapshot
def test_subset_simulation_multi_result_coalescing_easy_arithmetic(snapshot):
res1 = impl.SubsetSimulationResult(
probs_list=(),
over_target_cost=1,
over_target_likelihood=1,
under_target_cost=0.99,
under_target_likelihood=0.8,
lowest_likelihood=0.5,
messages=[],
)
res2 = impl.SubsetSimulationResult(
probs_list=(),
over_target_cost=1,
over_target_likelihood=1,
under_target_cost=0.99,
under_target_likelihood=0.6,
lowest_likelihood=0.01,
messages=[],
)
combined = impl.coalesce_ss_results("test", [res1, res2])
assert combined.arithmetic_mean_estimated_likelihood == 0.7
assert combined == snapshot
def test_subset_simulation_multi_result_coalescing_easy_geometric(snapshot):
res1 = impl.SubsetSimulationResult(
probs_list=(),
over_target_cost=1,
over_target_likelihood=1,
under_target_cost=0.99,
under_target_likelihood=0.1,
lowest_likelihood=0.5,
messages=[],
)
res2 = impl.SubsetSimulationResult(
probs_list=(),
over_target_cost=1,
over_target_likelihood=1,
under_target_cost=0.99,
under_target_likelihood=0.001,
lowest_likelihood=0.01,
messages=[],
)
combined = impl.coalesce_ss_results("test", [res1, res2])
numpy.testing.assert_allclose(combined.estimated_likelihood, 0.01)
assert combined == snapshot