Compare commits

...

14 Commits

Author SHA1 Message Date
a8a8ff45ec chore(deps): update dependency python-semantic-release to v8
Some checks failed
renovate/artifacts Artifact file update failure
gitea-physics/deepdog/pipeline/pr-master There was a failure building this commit
2023-07-28 01:31:05 +00:00
f7559b2c4f
chore(release): 0.7.4
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2023-07-27 17:40:50 -05:00
9a7a3ff2c7
feat: adds configurable chunk size for the initial mc level 0 SS stage cost calculation to reduce memory usage
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2023-07-27 17:39:02 -05:00
c4805806be
test: fixes lint for none type
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2023-07-27 17:11:57 -05:00
161bcf42ad
fix: fixes bug if case of clamping necessary 2023-07-27 17:09:52 -05:00
8e6ead416c
feat: allows for deepdog bayesrun with ss to not print csv to make snapshot testing possible 2023-07-27 17:09:36 -05:00
e6defc7948
fix: fixes bug with clamped probabilities being underestimated 2023-07-27 17:05:33 -05:00
33d5da6a4f
fmt: adds e203 to flake8 ignore to let black do its thing 2023-07-27 16:49:31 -05:00
1110372a55
build: more efficient doo fmt 2023-07-27 16:47:11 -05:00
e6a00d6b8f
debug: adds debug logs 2023-07-27 16:25:51 -05:00
57cd746e5c
chore(release): 0.7.3
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2023-07-26 20:27:39 -05:00
878e16286b
deps: updates pytest-cov
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2023-07-26 20:23:48 -05:00
4726ccfb8c
fmt: formatting 2023-07-26 20:21:53 -05:00
598dad1e6d
feat: adds utility options and avoids memory leak
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2023-07-26 20:14:19 -05:00
9 changed files with 494 additions and 48 deletions

View File

@ -1,3 +1,3 @@
[flake8]
ignore = W191, E501, W503
ignore = W191, E501, W503, E203
max-line-length = 120

View File

@ -2,6 +2,27 @@
All notable changes to this project will be documented in this file. See [standard-version](https://github.com/conventional-changelog/standard-version) for commit guidelines.
### [0.7.4](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.3...0.7.4) (2023-07-27)
### Features
* adds configurable chunk size for the initial mc level 0 SS stage cost calculation to reduce memory usage ([9a7a3ff](https://gitea.deepak.science:2222/physics/deepdog/commit/9a7a3ff2c7ebe81d5e10647ce39844c372ff7b07))
* allows for deepdog bayesrun with ss to not print csv to make snapshot testing possible ([8e6ead4](https://gitea.deepak.science:2222/physics/deepdog/commit/8e6ead416c9eba56f568f648d0df44caaa510cfe))
### Bug Fixes
* fixes bug if case of clamping necessary ([161bcf4](https://gitea.deepak.science:2222/physics/deepdog/commit/161bcf42addf331661c3929073688b9f2c13502c))
* fixes bug with clamped probabilities being underestimated ([e6defc7](https://gitea.deepak.science:2222/physics/deepdog/commit/e6defc794871a48ac331023eb477bd235b78d6d0))
### [0.7.3](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.2...0.7.3) (2023-07-27)
### Features
* adds utility options and avoids memory leak ([598dad1](https://gitea.deepak.science:2222/physics/deepdog/commit/598dad1e6dc8fc0b7a5b4a90c8e17bf744e8d98c))
### [0.7.2](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.1...0.7.2) (2023-07-24)

View File

@ -70,6 +70,9 @@ class BayesRunWithSubspaceSimulation:
ss_default_r_step=0.01,
ss_default_w_log_step=0.01,
ss_default_upper_w_log_step=4,
ss_dump_last_generation=False,
ss_initial_costs_chunk_size=100,
write_output_to_bayesruncsv=True,
) -> None:
self.dot_inputs = pdme.inputs.inputs_with_frequency_range(
dot_positions, frequency_range
@ -133,13 +136,22 @@ class BayesRunWithSubspaceSimulation:
self.ss_default_r_step = ss_default_r_step
self.ss_default_w_log_step = ss_default_w_log_step
self.ss_default_upper_w_log_step = ss_default_upper_w_log_step
self.ss_dump_last_generation = ss_dump_last_generation
self.ss_initial_costs_chunk_size = ss_initial_costs_chunk_size
self.run_count = run_count
def go(self) -> None:
with open(self.filename, "a", newline="") as outfile:
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
writer.writeheader()
self.write_output_to_csv = write_output_to_bayesruncsv
def go(self) -> Sequence:
if self.write_output_to_csv:
with open(self.filename, "a", newline="") as outfile:
writer = csv.DictWriter(
outfile, fieldnames=self.csv_fields, dialect="unix"
)
writer.writeheader()
return_result = []
for run in range(1, self.run_count + 1):
@ -172,6 +184,9 @@ class BayesRunWithSubspaceSimulation:
self.ss_default_r_step,
self.ss_default_w_log_step,
self.ss_default_upper_w_log_step,
initial_cost_chunk_size=self.ss_initial_costs_chunk_size,
keep_probs_list=False,
dump_last_generation_to_file=self.ss_dump_last_generation,
)
results.append(subset_run.execute())
@ -195,8 +210,14 @@ class BayesRunWithSubspaceSimulation:
for (name, result) in zip(self.model_names, results):
if result.over_target_likelihood is None:
clamped_likelihood = result.probs_list[-1][0] / CLAMPING_FACTOR
_logger.warning(f"got a none result, clamping to {clamped_likelihood}")
if result.lowest_likelihood is None:
_logger.error(f"result {result} looks bad")
clamped_likelihood = 10**-15
else:
clamped_likelihood = result.lowest_likelihood / CLAMPING_FACTOR
_logger.warning(
f"got a none result, clamping to {clamped_likelihood}"
)
else:
clamped_likelihood = result.over_target_likelihood
likelihoods.append(clamped_likelihood)
@ -216,12 +237,14 @@ class BayesRunWithSubspaceSimulation:
for name, probability in zip(self.model_names, self.probabilities):
row[f"{name}_prob"] = probability
_logger.info(row)
return_result.append(row)
with open(self.filename, "a", newline="") as outfile:
writer = csv.DictWriter(
outfile, fieldnames=self.csv_fields, dialect="unix"
)
writer.writerow(row)
if self.write_output_to_csv:
with open(self.filename, "a", newline="") as outfile:
writer = csv.DictWriter(
outfile, fieldnames=self.csv_fields, dialect="unix"
)
writer.writerow(row)
if self.use_end_threshold:
max_prob = max(self.probabilities)
@ -230,3 +253,5 @@ class BayesRunWithSubspaceSimulation:
f"Aborting early, because {max_prob} is greater than {self.end_threshold}"
)
break
return return_result

View File

@ -17,6 +17,7 @@ class SubsetSimulationResult:
over_target_likelihood: Optional[float]
under_target_cost: Optional[float]
under_target_likelihood: Optional[float]
lowest_likelihood: Optional[float]
class SubsetSimulation:
@ -37,6 +38,9 @@ class SubsetSimulation:
default_r_step=0.01,
default_w_log_step=0.01,
default_upper_w_log_step=4,
keep_probs_list=True,
dump_last_generation_to_file=False,
initial_cost_chunk_size=100,
):
name, model = model_name_pair
self.model_name = name
@ -79,6 +83,11 @@ class SubsetSimulation:
self.target_cost = target_cost
_logger.info(f"will stop at target cost {target_cost}")
self.keep_probs_list = keep_probs_list
self.dump_last_generations = dump_last_generation_to_file
self.initial_cost_chunk_size = initial_cost_chunk_size
def execute(self) -> SubsetSimulationResult:
probs_list = []
@ -90,7 +99,14 @@ class SubsetSimulation:
)
# _logger.debug(sample_dipoles)
# _logger.debug(sample_dipoles.shape)
costs = self.cost_function_to_use(sample_dipoles)
raw_costs = []
_logger.debug(f"Using iterated cost function thing with chunk size {self.initial_cost_chunk_size}")
for x in range(0, len(sample_dipoles), self.initial_cost_chunk_size):
_logger.debug(f"doing chunk {x}")
raw_costs.extend(self.cost_function_to_use(sample_dipoles[x: x + self.initial_cost_chunk_size]))
costs = numpy.array(raw_costs)
_logger.debug(f"costs: {costs}")
sorted_indexes = costs.argsort()[::-1]
@ -114,27 +130,42 @@ class SubsetSimulation:
mcmc_rng = numpy.random.default_rng(self.mcmc_seed)
for i in range(self.m_max):
next_seeds = all_chains[-self.n_c:]
next_seeds = all_chains[-self.n_c :]
for cost_index, cost_chain in enumerate(all_chains[: -self.n_c]):
probs_list.append(
(
((self.n_c * self.n_s - cost_index) / (self.n_c * self.n_s))
/ (self.n_s ** (i)),
cost_chain[0],
i + 1,
if self.dump_last_generations:
_logger.info("writing out csv file")
next_dipoles_seed_dipoles = numpy.array([n[1] for n in next_seeds])
for n in range(self.model.n):
_logger.info(f"{next_dipoles_seed_dipoles[:, n].shape}")
numpy.savetxt(
f"generation_{self.n_c}_{self.n_s}_{i}_dipole_{n}.csv",
next_dipoles_seed_dipoles[:, n],
delimiter=",",
)
if self.keep_probs_list:
for cost_index, cost_chain in enumerate(all_chains[: -self.n_c]):
probs_list.append(
(
((self.n_c * self.n_s - cost_index) / (self.n_c * self.n_s))
/ (self.n_s ** (i)),
cost_chain[0],
i + 1,
)
)
)
next_seeds_as_array = numpy.array([s for _, s in next_seeds])
stdevs = self.get_stdevs_from_arrays(next_seeds_as_array)
_logger.info(f"got stdevs: {stdevs.stdevs}")
_logger.debug("Starting the MCMC")
all_chains = []
for c, s in next_seeds:
for seed_index, (c, s) in enumerate(next_seeds):
# chain = mcmc(s, threshold_cost, n_s, model, dot_inputs_array, actual_measurement_array, mcmc_rng, curr_cost=c, stdevs=stdevs)
# until new version gotta do
_logger.debug(
f"\t{seed_index}: getting another chain from the next seed"
)
chain = self.model.get_mcmc_chain(
s,
self.cost_function_to_use,
@ -150,10 +181,11 @@ class SubsetSimulation:
except IndexError:
filtered_cost = cost
all_chains.append((filtered_cost, chained))
_logger.debug("finished mcmc")
# _logger.debug(all_chains)
all_chains.sort(key=lambda c: c[0], reverse=True)
_logger.debug("finished sorting all_chains")
threshold_cost = all_chains[-self.n_c][0]
_logger.info(
@ -169,14 +201,18 @@ class SubsetSimulation:
shorter_probs_list = []
for cost_index, cost_chain in enumerate(all_chains):
probs_list.append(
(
((self.n_c * self.n_s - cost_index) / (self.n_c * self.n_s))
/ (self.n_s ** (i)),
cost_chain[0],
i + 1,
if self.keep_probs_list:
probs_list.append(
(
(
(self.n_c * self.n_s - cost_index)
/ (self.n_c * self.n_s)
)
/ (self.n_s ** (i)),
cost_chain[0],
i + 1,
)
)
)
shorter_probs_list.append(
(
cost_chain[0],
@ -191,21 +227,23 @@ class SubsetSimulation:
over_target_likelihood=shorter_probs_list[over_index - 1][1],
under_target_cost=shorter_probs_list[over_index][0],
under_target_likelihood=shorter_probs_list[over_index][1],
lowest_likelihood=shorter_probs_list[-1][1],
)
return result
# _logger.debug([c[0] for c in all_chains[-n_c:]])
_logger.info(f"doing level {i + 1}")
for cost_index, cost_chain in enumerate(all_chains):
probs_list.append(
(
((self.n_c * self.n_s - cost_index) / (self.n_c * self.n_s))
/ (self.n_s ** (self.m_max)),
cost_chain[0],
self.m_max + 1,
if self.keep_probs_list:
for cost_index, cost_chain in enumerate(all_chains):
probs_list.append(
(
((self.n_c * self.n_s - cost_index) / (self.n_c * self.n_s))
/ (self.n_s ** (self.m_max)),
cost_chain[0],
self.m_max + 1,
)
)
)
threshold_cost = all_chains[-self.n_c][0]
_logger.info(
f"final threshold cost: {threshold_cost}, at P = (1 / {self.n_s})^{self.m_max + 1}"
@ -215,12 +253,16 @@ class SubsetSimulation:
# for prob, prob_cost in probs_list:
# _logger.info(f"\t{prob}: {prob_cost}")
probs_list.sort(key=lambda c: c[0], reverse=True)
min_likelihood = ((1) / (self.n_c * self.n_s)) / (self.n_s ** (self.m_max))
result = SubsetSimulationResult(
probs_list=probs_list,
over_target_cost=None,
over_target_likelihood=None,
under_target_cost=None,
under_target_likelihood=None,
lowest_likelihood=min_likelihood,
)
return result

2
do.sh
View File

@ -18,7 +18,7 @@ test() {
fmt() {
poetry run black .
find . -type f -name "*.py" -exec sed -i -e 's/ /\t/g' {} \;
find . -not \( -path "./.*" -type d -prune \) -type f -name "*.py" -exec sed -i -e 's/ /\t/g' {} \;
}
release() {

28
poetry.lock generated
View File

@ -92,6 +92,14 @@ category = "dev"
optional = false
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7"
[[package]]
name = "colored"
version = "1.4.4"
description = "Simple library for color and formatting to terminal"
category = "dev"
optional = false
python-versions = "*"
[[package]]
name = "coverage"
version = "7.2.7"
@ -461,11 +469,11 @@ testing = ["argcomplete", "attrs (>=19.2.0)", "hypothesis (>=3.56)", "mock", "no
[[package]]
name = "pytest-cov"
version = "3.0.0"
version = "4.1.0"
description = "Pytest plugin for measuring coverage."
category = "dev"
optional = false
python-versions = ">=3.6"
python-versions = ">=3.7"
[package.dependencies]
coverage = {version = ">=5.2.1", extras = ["toml"]}
@ -633,6 +641,18 @@ category = "dev"
optional = false
python-versions = ">=3.6"
[[package]]
name = "syrupy"
version = "4.0.8"
description = "Pytest Snapshot Test Utility"
category = "dev"
optional = false
python-versions = ">=3.8.1,<4"
[package.dependencies]
colored = ">=1.3.92,<2.0.0"
pytest = ">=7.0.0,<8.0.0"
[[package]]
name = "tomli"
version = "2.0.1"
@ -730,7 +750,7 @@ testing = ["pytest (>=6)", "pytest-checkdocs (>=2.4)", "flake8 (<5)", "pytest-co
[metadata]
lock-version = "1.1"
python-versions = ">=3.8.1,<3.10"
content-hash = "0161af7edf18c16819f1ce083ab491c17c9809f2770219725131451b1a16a970"
content-hash = "e1531b1493bac50ffe5e8f9a46a64d9b66198f7021f6d643c72f21cb53dc77ec"
[metadata.files]
black = []
@ -741,6 +761,7 @@ charset-normalizer = []
click = []
click-log = []
colorama = []
colored = []
coverage = []
cryptography = []
docutils = []
@ -786,6 +807,7 @@ secretstorage = []
semver = []
six = []
smmap = []
syrupy = []
tomli = []
tomlkit = []
tqdm = []

View File

@ -1,6 +1,6 @@
[tool.poetry]
name = "deepdog"
version = "0.7.2"
version = "0.7.4"
description = ""
authors = ["Deepak Mallubhotla <dmallubhotla+github@gmail.com>"]
@ -13,10 +13,11 @@ scipy = "1.10"
[tool.poetry.dev-dependencies]
pytest = ">=6"
flake8 = "^4.0.1"
pytest-cov = "^3.0.0"
pytest-cov = "^4.1.0"
mypy = "^0.971"
python-semantic-release = "^7.24.0"
python-semantic-release = "^8.0.0"
black = "^22.3.0"
syrupy = "^4.0.8"
[build-system]
requires = ["poetry-core>=1.0.0"]

View File

@ -0,0 +1,177 @@
# serializer version: 1
# name: test_basic_analysis
list([
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 0.1,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 0.3333333333333333,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.1,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.3333333333333333,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.1,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.3333333333333333,
'dipole_frequency_1': 0.006029931414230269,
'dipole_frequency_2': 85436.78758379082,
'dipole_location_1': array([-4.76615152, -6.33160296, 5.29522808]),
'dipole_location_2': array([-4.72700391, -2.06478573, 6.52467702]),
'dipole_moment_1': array([ 860.14181416, -450.27082062, -239.60852996]),
'dipole_moment_2': array([ 908.18325588, -208.52681777, -362.93214244]),
}),
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 0.45,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 0.3103448275862069,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.9,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.6206896551724138,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.1,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.06896551724137932,
'dipole_frequency_1': 102275.63477261562,
'dipole_frequency_2': 1755280.9783485082,
'dipole_location_1': array([ 4.71515397, -9.70362197, 5.43016546]),
'dipole_location_2': array([3.42476038, 3.88562934, 5.15034328]),
'dipole_moment_1': array([-502.60742674, -790.60222587, 349.7626267 ]),
'dipole_moment_2': array([-192.42708465, -434.81009148, -879.7226844 ]),
}),
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 0.7,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 0.6631578947368421,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.1,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.18947368421052635,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.7,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.1473684210526316,
'dipole_frequency_1': 2896.799464036654,
'dipole_frequency_2': 9.980565189326681e-05,
'dipole_location_1': array([-4.97465789, 12.54716531, 6.06324588]),
'dipole_location_2': array([ 9.84518459, -11.1183876 , 7.35028226]),
'dipole_moment_1': array([997.67961917, 19.6376112 , 65.19004305]),
'dipole_moment_2': array([305.63093655, 440.57669389, 844.08643362]),
}),
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 0.1,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 0.663157894736842,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.1,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.18947368421052635,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.1,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.1473684210526316,
'dipole_frequency_1': 1.4522667818288244,
'dipole_frequency_2': 2704.9795645301197,
'dipole_location_1': array([ 7.38183022, 16.6745801 , 7.10428414]),
'dipole_location_2': array([-8.15636906, -9.56609132, 6.34141559]),
'dipole_moment_1': array([-145.9924693 , 738.74936496, 657.97839986]),
'dipole_moment_2': array([-960.16113239, 104.96824669, -258.98314046]),
}),
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 0.9,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 0.9465776293823038,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.1,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.030050083472454105,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.1,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.02337228714524208,
'dipole_frequency_1': 3827.2315421318913,
'dipole_frequency_2': 1.9301094166184413e-05,
'dipole_location_1': array([ 5.02067673, -0.9783039 , 6.1431897 ]),
'dipole_location_2': array([ 4.66628999, 10.80907459, 7.21771744]),
'dipole_moment_1': array([ 871.30659253, -299.17389491, -388.99846068]),
'dipole_moment_2': array([-189.87268624, 677.28285845, 710.79975568]),
}),
])
# ---
# name: test_bayesss_with_tighter_cost
list([
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 0.33333333333333337,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.33333333333333337,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.33333333333333337,
'dipole_frequency_1': 0.006029931414230269,
'dipole_frequency_2': 85436.78758379082,
'dipole_location_1': array([-4.76615152, -6.33160296, 5.29522808]),
'dipole_location_2': array([-4.72700391, -2.06478573, 6.52467702]),
'dipole_moment_1': array([ 860.14181416, -450.27082062, -239.60852996]),
'dipole_moment_2': array([ 908.18325588, -208.52681777, -362.93214244]),
}),
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 0.0109375,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 0.1044776119402985,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.03125,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.2985074626865672,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.0625,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.5970149253731344,
'dipole_frequency_1': 102275.63477261562,
'dipole_frequency_2': 1755280.9783485082,
'dipole_location_1': array([ 4.71515397, -9.70362197, 5.43016546]),
'dipole_location_2': array([3.42476038, 3.88562934, 5.15034328]),
'dipole_moment_1': array([-502.60742674, -790.60222587, 349.7626267 ]),
'dipole_moment_2': array([-192.42708465, -434.81009148, -879.7226844 ]),
}),
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 7.291135021404688e-05,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.021875,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.4666326413699001,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.0125,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.5332944472798858,
'dipole_frequency_1': 2896.799464036654,
'dipole_frequency_2': 9.980565189326681e-05,
'dipole_location_1': array([-4.97465789, 12.54716531, 6.06324588]),
'dipole_location_2': array([ 9.84518459, -11.1183876 , 7.35028226]),
'dipole_moment_1': array([997.67961917, 19.6376112 , 65.19004305]),
'dipole_moment_2': array([305.63093655, 440.57669389, 844.08643362]),
}),
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 7.291135021404688e-05,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.4666326413699001,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.5332944472798858,
'dipole_frequency_1': 1.4522667818288244,
'dipole_frequency_2': 2704.9795645301197,
'dipole_location_1': array([ 7.38183022, 16.6745801 , 7.10428414]),
'dipole_location_2': array([-8.15636906, -9.56609132, 6.34141559]),
'dipole_moment_1': array([-145.9924693 , 738.74936496, 657.97839986]),
'dipole_moment_2': array([-960.16113239, 104.96824669, -258.98314046]),
}),
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 0.175,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 0.00012008361740869356,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.05625,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.24702915581216964,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.15,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.7528507605704217,
'dipole_frequency_1': 3827.2315421318913,
'dipole_frequency_2': 1.9301094166184413e-05,
'dipole_location_1': array([ 5.02067673, -0.9783039 , 6.1431897 ]),
'dipole_location_2': array([ 4.66628999, 10.80907459, 7.21771744]),
'dipole_moment_1': array([ 871.30659253, -299.17389491, -388.99846068]),
'dipole_moment_2': array([-189.87268624, 677.28285845, 710.79975568]),
}),
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 4.9116305003549454e-08,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.0109375,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.11316396672817797,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.028125,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.886835984155517,
'dipole_frequency_1': 1.1715179359592061e-05,
'dipole_frequency_2': 0.0019103783276337497,
'dipole_location_1': array([-0.95736547, 1.09273812, 7.47158641]),
'dipole_location_2': array([ -3.18510322, -15.64493131, 5.81623624]),
'dipole_moment_1': array([-184.64961369, 956.56786553, 225.57136075]),
'dipole_moment_2': array([ -34.63395137, 801.17771816, -597.42342885]),
}),
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 1.977090156727901e-10,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.00045552157211010855,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.002734375,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.9995444782301809,
'dipole_frequency_1': 999786.9069039805,
'dipole_frequency_2': 186034.67996840767,
'dipole_location_1': array([-5.59679125, 6.3411602 , 5.33602522]),
'dipole_location_2': array([-0.03412955, -6.83522954, 5.58551513]),
'dipole_moment_1': array([826.38270589, 491.81526944, 274.24325726]),
'dipole_moment_2': array([ 202.74745884, -656.07483714, -726.95204519]),
}),
])
# ---

View File

@ -0,0 +1,158 @@
import deepdog
import logging
import logging.config
import numpy.random
from pdme.model import (
LogSpacedRandomCountMultipleDipoleFixedMagnitudeModel,
LogSpacedRandomCountMultipleDipoleFixedMagnitudeXYModel,
LogSpacedRandomCountMultipleDipoleFixedMagnitudeFixedOrientationModel,
)
_logger = logging.getLogger(__name__)
def fixed_z_model_func(
xmin,
xmax,
ymin,
ymax,
zmin,
zmax,
wexp_min,
wexp_max,
pfixed,
n_max,
prob_occupancy,
):
return LogSpacedRandomCountMultipleDipoleFixedMagnitudeFixedOrientationModel(
xmin,
xmax,
ymin,
ymax,
zmin,
zmax,
wexp_min,
wexp_max,
pfixed,
0,
0,
n_max,
prob_occupancy,
)
def get_model(orientation):
model_funcs = {
"fixedz": fixed_z_model_func,
"free": LogSpacedRandomCountMultipleDipoleFixedMagnitudeModel,
"fixedxy": LogSpacedRandomCountMultipleDipoleFixedMagnitudeXYModel,
}
model = model_funcs[orientation](
-10,
10,
-17.5,
17.5,
5,
7.5,
-5,
6.5,
10**3,
2,
0.99999999,
)
model.n = 2
model.rng = numpy.random.default_rng(1234)
return (
f"connors_geom-5height-orientation_{orientation}-pfixexp_{3}-dipole_count_{2}",
model,
)
def test_basic_analysis(snapshot):
dot_positions = [[0, 0, 0], [0, 1, 0]]
freqs = [1, 10, 100]
models = []
orientations = ["free", "fixedxy", "fixedz"]
for orientation in orientations:
models.append(get_model(orientation))
_logger.info(f"have {len(models)} models to look at")
if len(models) == 1:
_logger.info(f"only one model, name: {models[0][0]}")
square_run = deepdog.BayesRunWithSubspaceSimulation(
dot_positions,
freqs,
models,
models[0][1],
filename_slug="test",
end_threshold=0.9,
ss_n_c=5,
ss_n_s=2,
ss_m_max=10,
ss_target_cost=150,
ss_level_0_seed=200,
ss_mcmc_seed=20,
ss_use_adaptive_steps=True,
ss_default_phi_step=0.01,
ss_default_theta_step=0.01,
ss_default_r_step=0.01,
ss_default_w_log_step=0.01,
ss_default_upper_w_log_step=4,
ss_dump_last_generation=False,
write_output_to_bayesruncsv=False,
ss_initial_costs_chunk_size=1000,
)
result = square_run.go()
assert result == snapshot
def test_bayesss_with_tighter_cost(snapshot):
dot_positions = [[0, 0, 0], [0, 1, 0]]
freqs = [1, 10, 100]
models = []
orientations = ["free", "fixedxy", "fixedz"]
for orientation in orientations:
models.append(get_model(orientation))
_logger.info(f"have {len(models)} models to look at")
if len(models) == 1:
_logger.info(f"only one model, name: {models[0][0]}")
square_run = deepdog.BayesRunWithSubspaceSimulation(
dot_positions,
freqs,
models,
models[0][1],
filename_slug="test",
end_threshold=0.9,
ss_n_c=5,
ss_n_s=2,
ss_m_max=10,
ss_target_cost=1.5,
ss_level_0_seed=200,
ss_mcmc_seed=20,
ss_use_adaptive_steps=True,
ss_default_phi_step=0.01,
ss_default_theta_step=0.01,
ss_default_r_step=0.01,
ss_default_w_log_step=0.01,
ss_default_upper_w_log_step=4,
ss_dump_last_generation=False,
write_output_to_bayesruncsv=False,
ss_initial_costs_chunk_size=1
)
result = square_run.go()
assert result == snapshot