All checks were successful
gitea-physics/deepdog/pipeline/pr-master This commit looks good
282 lines
8.0 KiB
Python
282 lines
8.0 KiB
Python
import pdme.inputs
|
|
import pdme.model
|
|
import pdme.measurement.input_types
|
|
import pdme.measurement.oscillating_dipole
|
|
import pdme.util.fast_v_calc
|
|
import pdme.util.fast_nonlocal_spectrum
|
|
from typing import Sequence, Tuple, List
|
|
import datetime
|
|
import csv
|
|
import multiprocessing
|
|
import logging
|
|
import numpy
|
|
|
|
|
|
# TODO: remove hardcode
|
|
CHUNKSIZE = 50
|
|
|
|
# TODO: It's garbage to have this here duplicated from pdme.
|
|
DotInput = Tuple[numpy.typing.ArrayLike, float]
|
|
|
|
|
|
_logger = logging.getLogger(__name__)
|
|
|
|
|
|
def get_a_result(input) -> int:
|
|
model, dot_inputs, lows, highs, monte_carlo_count, max_frequency, seed = input
|
|
|
|
rng = numpy.random.default_rng(seed)
|
|
sample_dipoles = model.get_monte_carlo_dipole_inputs(
|
|
monte_carlo_count, max_frequency, rng_to_use=rng
|
|
)
|
|
vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(dot_inputs, sample_dipoles)
|
|
return numpy.count_nonzero(pdme.util.fast_v_calc.between(vals, lows, highs))
|
|
|
|
|
|
def get_a_result_using_pairs(input) -> int:
|
|
(
|
|
model,
|
|
dot_inputs,
|
|
pair_inputs,
|
|
local_lows,
|
|
local_highs,
|
|
nonlocal_lows,
|
|
nonlocal_highs,
|
|
monte_carlo_count,
|
|
max_frequency,
|
|
) = input
|
|
sample_dipoles = model.get_n_single_dipoles(monte_carlo_count, max_frequency)
|
|
local_vals = pdme.util.fast_v_calc.fast_vs_for_dipoles(dot_inputs, sample_dipoles)
|
|
local_matches = pdme.util.fast_v_calc.between(local_vals, local_lows, local_highs)
|
|
nonlocal_vals = pdme.util.fast_nonlocal_spectrum.fast_s_nonlocal(
|
|
pair_inputs, sample_dipoles
|
|
)
|
|
nonlocal_matches = pdme.util.fast_v_calc.between(
|
|
nonlocal_vals, nonlocal_lows, nonlocal_highs
|
|
)
|
|
combined_matches = numpy.logical_and(local_matches, nonlocal_matches)
|
|
return numpy.count_nonzero(combined_matches)
|
|
|
|
|
|
class BayesRun:
|
|
"""
|
|
A single Bayes run for a given set of dots.
|
|
|
|
Parameters
|
|
----------
|
|
dot_inputs : Sequence[DotInput]
|
|
The dot inputs for this bayes run.
|
|
|
|
models_with_names : Sequence[Tuple(str, pdme.model.DipoleModel)]
|
|
The models to evaluate.
|
|
|
|
actual_model : pdme.model.DipoleModel
|
|
The model which is actually correct.
|
|
|
|
filename_slug : str
|
|
The filename slug to include.
|
|
|
|
run_count: int
|
|
The number of runs to do.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dot_positions: Sequence[numpy.typing.ArrayLike],
|
|
frequency_range: Sequence[float],
|
|
models_with_names: Sequence[Tuple[str, pdme.model.DipoleModel]],
|
|
actual_model: pdme.model.DipoleModel,
|
|
filename_slug: str,
|
|
run_count: int = 100,
|
|
low_error: float = 0.9,
|
|
high_error: float = 1.1,
|
|
monte_carlo_count: int = 10000,
|
|
monte_carlo_cycles: int = 10,
|
|
target_success: int = 100,
|
|
max_monte_carlo_cycles_steps: int = 10,
|
|
max_frequency: float = 20,
|
|
end_threshold: float = None,
|
|
chunksize: int = CHUNKSIZE,
|
|
) -> None:
|
|
self.dot_inputs = pdme.inputs.inputs_with_frequency_range(
|
|
dot_positions, frequency_range
|
|
)
|
|
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
|
|
self.dot_inputs
|
|
)
|
|
|
|
self.models = [model for (_, model) in models_with_names]
|
|
self.model_names = [name for (name, _) in models_with_names]
|
|
self.actual_model = actual_model
|
|
|
|
self.n: int
|
|
try:
|
|
self.n = self.actual_model.n # type: ignore
|
|
except AttributeError:
|
|
self.n = 1
|
|
|
|
self.model_count = len(self.models)
|
|
self.monte_carlo_count = monte_carlo_count
|
|
self.monte_carlo_cycles = monte_carlo_cycles
|
|
self.target_success = target_success
|
|
self.max_monte_carlo_cycles_steps = max_monte_carlo_cycles_steps
|
|
self.run_count = run_count
|
|
self.low_error = low_error
|
|
self.high_error = high_error
|
|
|
|
self.csv_fields = []
|
|
for i in range(self.n):
|
|
self.csv_fields.extend(
|
|
[
|
|
f"dipole_moment_{i+1}",
|
|
f"dipole_location_{i+1}",
|
|
f"dipole_frequency_{i+1}",
|
|
]
|
|
)
|
|
self.compensate_zeros = True
|
|
self.chunksize = chunksize
|
|
for name in self.model_names:
|
|
self.csv_fields.extend([f"{name}_success", f"{name}_count", f"{name}_prob"])
|
|
|
|
self.probabilities = [1 / self.model_count] * self.model_count
|
|
|
|
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
|
self.filename = f"{timestamp}-{filename_slug}.bayesrun.csv"
|
|
self.max_frequency = max_frequency
|
|
|
|
if end_threshold is not None:
|
|
if 0 < end_threshold < 1:
|
|
self.end_threshold: float = end_threshold
|
|
self.use_end_threshold = True
|
|
_logger.info(f"Will abort early, at {self.end_threshold}.")
|
|
else:
|
|
raise ValueError(
|
|
f"end_threshold should be between 0 and 1, but is actually {end_threshold}"
|
|
)
|
|
|
|
def go(self) -> None:
|
|
with open(self.filename, "a", newline="") as outfile:
|
|
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
|
|
writer.writeheader()
|
|
|
|
for run in range(1, self.run_count + 1):
|
|
|
|
# Generate the actual dipoles
|
|
actual_dipoles = self.actual_model.get_dipoles(self.max_frequency)
|
|
|
|
dots = actual_dipoles.get_percent_range_dot_measurements(
|
|
self.dot_inputs, self.low_error, self.high_error
|
|
)
|
|
(
|
|
lows,
|
|
highs,
|
|
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
|
|
dots
|
|
)
|
|
|
|
_logger.info(f"Going to work on dipole at {actual_dipoles.dipoles}")
|
|
|
|
# define a new seed sequence for each run
|
|
seed_sequence = numpy.random.SeedSequence(run)
|
|
|
|
results = []
|
|
_logger.debug("Going to iterate over models now")
|
|
for model_count, model in enumerate(self.models):
|
|
_logger.debug(f"Doing model #{model_count}")
|
|
core_count = multiprocessing.cpu_count() - 1 or 1
|
|
with multiprocessing.Pool(core_count) as pool:
|
|
cycle_count = 0
|
|
cycle_success = 0
|
|
cycles = 0
|
|
while (cycles < self.max_monte_carlo_cycles_steps) and (
|
|
cycle_success <= self.target_success
|
|
):
|
|
_logger.debug(f"Starting cycle {cycles}")
|
|
cycles += 1
|
|
current_success = 0
|
|
cycle_count += self.monte_carlo_count * self.monte_carlo_cycles
|
|
|
|
# generate a seed from the sequence for each core.
|
|
# note this needs to be inside the loop for monte carlo cycle steps!
|
|
# that way we get more stuff.
|
|
seeds = seed_sequence.spawn(self.monte_carlo_cycles)
|
|
|
|
current_success = sum(
|
|
pool.imap_unordered(
|
|
get_a_result,
|
|
[
|
|
(
|
|
model,
|
|
self.dot_inputs_array,
|
|
lows,
|
|
highs,
|
|
self.monte_carlo_count,
|
|
self.max_frequency,
|
|
seed,
|
|
)
|
|
for seed in seeds
|
|
],
|
|
self.chunksize,
|
|
)
|
|
)
|
|
|
|
cycle_success += current_success
|
|
_logger.debug(f"current running successes: {cycle_success}")
|
|
results.append((cycle_count, cycle_success))
|
|
|
|
_logger.debug("Done, constructing output now")
|
|
row = {
|
|
"dipole_moment_1": actual_dipoles.dipoles[0].p,
|
|
"dipole_location_1": actual_dipoles.dipoles[0].s,
|
|
"dipole_frequency_1": actual_dipoles.dipoles[0].w,
|
|
}
|
|
for i in range(1, self.n):
|
|
try:
|
|
current_dipoles = actual_dipoles.dipoles[i]
|
|
row[f"dipole_moment_{i+1}"] = current_dipoles.p
|
|
row[f"dipole_location_{i+1}"] = current_dipoles.s
|
|
row[f"dipole_frequency_{i+1}"] = current_dipoles.w
|
|
except IndexError:
|
|
_logger.info(f"Not writing anymore, saw end after {i}")
|
|
break
|
|
|
|
successes: List[float] = []
|
|
counts: List[int] = []
|
|
for model_index, (name, (count, result)) in enumerate(
|
|
zip(self.model_names, results)
|
|
):
|
|
|
|
row[f"{name}_success"] = result
|
|
row[f"{name}_count"] = count
|
|
successes.append(max(result, 0.5))
|
|
counts.append(count)
|
|
|
|
success_weight = sum(
|
|
[
|
|
(succ / count) * prob
|
|
for succ, count, prob in zip(successes, counts, self.probabilities)
|
|
]
|
|
)
|
|
new_probabilities = [
|
|
(succ / count) * old_prob / success_weight
|
|
for succ, count, old_prob in zip(successes, counts, self.probabilities)
|
|
]
|
|
self.probabilities = new_probabilities
|
|
for name, probability in zip(self.model_names, self.probabilities):
|
|
row[f"{name}_prob"] = probability
|
|
_logger.info(row)
|
|
|
|
with open(self.filename, "a", newline="") as outfile:
|
|
writer = csv.DictWriter(
|
|
outfile, fieldnames=self.csv_fields, dialect="unix"
|
|
)
|
|
writer.writerow(row)
|
|
|
|
if self.use_end_threshold:
|
|
max_prob = max(self.probabilities)
|
|
if max_prob > self.end_threshold:
|
|
_logger.info(
|
|
f"Aborting early, because {max_prob} is greater than {self.end_threshold}"
|
|
)
|
|
break
|