deepdog/deepdog/temp_aware_real_spectrum_run.py
Deepak Mallubhotla 1cf4454153
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/pr-master This commit looks good
fix: avoids redefinition of core count in loop
2023-04-13 20:21:17 -05:00

232 lines
6.6 KiB
Python

import pdme.inputs
import pdme.model
import pdme.measurement
import pdme.measurement.input_types
import pdme.measurement.oscillating_dipole
import pdme.util.fast_v_calc
import pdme.util.fast_nonlocal_spectrum
from typing import Sequence, Tuple, List, Dict, Union, Mapping
import datetime
import csv
import multiprocessing
import logging
import numpy
# TODO: remove hardcode
CHUNKSIZE = 50
_logger = logging.getLogger(__name__)
def get_a_result_fast_filter(input) -> int:
# (
# model,
# self.dot_inputs_array_dict,
# low_high_dict,
# self.monte_carlo_count,
# seed,
# )
model, dot_inputs_dict, low_high_dict, monte_carlo_count, seed = input
rng = numpy.random.default_rng(seed)
# TODO: A long term refactor is to pull the frequency stuff out from here. The None stands for max_frequency, which is unneeded in the actually useful models.
sample_dipoles = model.get_monte_carlo_dipole_inputs(
monte_carlo_count, None, rng_to_use=rng
)
current_sample = sample_dipoles
for temp in dot_inputs_dict.keys():
dot_inputs = dot_inputs_dict[temp]
lows, highs = low_high_dict[temp]
for di, low, high in zip(dot_inputs, lows, highs):
if len(current_sample) < 1:
break
vals = pdme.util.fast_v_calc.fast_vs_for_asymmetric_dipoleses(
numpy.array([di]), current_sample, temp
)
current_sample = current_sample[
numpy.all((vals > low) & (vals < high), axis=1)
]
return len(current_sample)
class TempAwareRealSpectrumRun:
"""
A bayes run given some real data, with potentially variable temperature.
Parameters
----------
measurements_dict : Dict[float, Sequence[pdme.measurement.DotRangeMeasurement]]
The dot inputs for this bayes run, in a dictionary indexed by temperatures
models_with_names : models_with_names: Sequence[Tuple[str, pdme.model.DipoleModel]],
The models to evaluate.
actual_model : pdme.model.DipoleModel
The model which is actually correct.
filename_slug : str
The filename slug to include.
run_count: int
The number of runs to do.
"""
def __init__(
self,
measurements_dict: Mapping[
float, Sequence[pdme.measurement.DotRangeMeasurement]
],
models_with_names: Sequence[Tuple[str, pdme.model.DipoleModel]],
filename_slug: str,
monte_carlo_count: int = 10000,
monte_carlo_cycles: int = 10,
target_success: int = 100,
max_monte_carlo_cycles_steps: int = 10,
chunksize: int = CHUNKSIZE,
initial_seed: int = 12345,
cap_core_count: int = 0,
) -> None:
self.measurements_dict = measurements_dict
self.dot_inputs_dict = {
k: [(measure.r, measure.f) for measure in measurements]
for k, measurements in measurements_dict.items()
}
self.dot_inputs_array_dict = {
k: pdme.measurement.input_types.dot_inputs_to_array(dot_inputs)
for k, dot_inputs in self.dot_inputs_dict.items()
}
self.models = [model for (_, model) in models_with_names]
self.model_names = [name for (name, _) in models_with_names]
self.model_count = len(self.models)
self.monte_carlo_count = monte_carlo_count
self.monte_carlo_cycles = monte_carlo_cycles
self.target_success = target_success
self.max_monte_carlo_cycles_steps = max_monte_carlo_cycles_steps
self.csv_fields = []
self.compensate_zeros = True
self.chunksize = chunksize
for name in self.model_names:
self.csv_fields.extend([f"{name}_success", f"{name}_count", f"{name}_prob"])
# for now initialise priors as uniform.
self.probabilities = [1 / self.model_count] * self.model_count
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
ff_string = "fast_filter"
self.filename = f"{timestamp}-{filename_slug}.realdata.{ff_string}.bayesrun.csv"
self.initial_seed = initial_seed
self.cap_core_count = cap_core_count
def go(self) -> None:
with open(self.filename, "a", newline="") as outfile:
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
writer.writeheader()
low_high_dict = {}
for temp, measurements in self.measurements_dict.items():
(
lows,
highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
measurements
)
low_high_dict[temp] = (lows, highs)
# define a new seed sequence for each run
seed_sequence = numpy.random.SeedSequence(self.initial_seed)
results = []
_logger.debug("Going to iterate over models now")
core_count = multiprocessing.cpu_count() - 1 or 1
if (self.cap_core_count >= 1) and (self.cap_core_count < core_count):
core_count = self.cap_core_count
_logger.info(f"Using {core_count} cores")
for model_count, (model, model_name) in enumerate(
zip(self.models, self.model_names)
):
_logger.debug(f"Doing model #{model_count}: {model_name}")
with multiprocessing.Pool(core_count) as pool:
cycle_count = 0
cycle_success = 0
cycles = 0
while (cycles < self.max_monte_carlo_cycles_steps) and (
cycle_success <= self.target_success
):
_logger.debug(f"Starting cycle {cycles}")
cycles += 1
current_success = 0
cycle_count += self.monte_carlo_count * self.monte_carlo_cycles
# generate a seed from the sequence for each core.
# note this needs to be inside the loop for monte carlo cycle steps!
# that way we get more stuff.
seeds = seed_sequence.spawn(self.monte_carlo_cycles)
result_func = get_a_result_fast_filter
current_success = sum(
pool.imap_unordered(
result_func,
[
(
model,
self.dot_inputs_array_dict,
low_high_dict,
self.monte_carlo_count,
seed,
)
for seed in seeds
],
self.chunksize,
)
)
cycle_success += current_success
_logger.debug(f"current running successes: {cycle_success}")
results.append((cycle_count, cycle_success))
_logger.debug("Done, constructing output now")
row: Dict[str, Union[int, float, str]] = {}
successes: List[float] = []
counts: List[int] = []
for model_index, (name, (count, result)) in enumerate(
zip(self.model_names, results)
):
row[f"{name}_success"] = result
row[f"{name}_count"] = count
successes.append(max(result, 0.5))
counts.append(count)
success_weight = sum(
[
(succ / count) * prob
for succ, count, prob in zip(successes, counts, self.probabilities)
]
)
new_probabilities = [
(succ / count) * old_prob / success_weight
for succ, count, old_prob in zip(successes, counts, self.probabilities)
]
self.probabilities = new_probabilities
for name, probability in zip(self.model_names, self.probabilities):
row[f"{name}_prob"] = probability
_logger.info(row)
with open(self.filename, "a", newline="") as outfile:
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
writer.writerow(row)