232 lines
6.6 KiB
Python
232 lines
6.6 KiB
Python
import pdme.inputs
|
|
import pdme.model
|
|
import pdme.measurement
|
|
import pdme.measurement.input_types
|
|
import pdme.measurement.oscillating_dipole
|
|
import pdme.util.fast_v_calc
|
|
import pdme.util.fast_nonlocal_spectrum
|
|
from typing import Sequence, Tuple, List, Dict, Union, Mapping
|
|
import datetime
|
|
import csv
|
|
import multiprocessing
|
|
import logging
|
|
import numpy
|
|
|
|
|
|
# TODO: remove hardcode
|
|
CHUNKSIZE = 50
|
|
|
|
|
|
_logger = logging.getLogger(__name__)
|
|
|
|
|
|
def get_a_result_fast_filter(input) -> int:
|
|
# (
|
|
# model,
|
|
# self.dot_inputs_array_dict,
|
|
# low_high_dict,
|
|
# self.monte_carlo_count,
|
|
# seed,
|
|
# )
|
|
model, dot_inputs_dict, low_high_dict, monte_carlo_count, seed = input
|
|
|
|
rng = numpy.random.default_rng(seed)
|
|
# TODO: A long term refactor is to pull the frequency stuff out from here. The None stands for max_frequency, which is unneeded in the actually useful models.
|
|
sample_dipoles = model.get_monte_carlo_dipole_inputs(
|
|
monte_carlo_count, None, rng_to_use=rng
|
|
)
|
|
|
|
current_sample = sample_dipoles
|
|
for temp in dot_inputs_dict.keys():
|
|
dot_inputs = dot_inputs_dict[temp]
|
|
lows, highs = low_high_dict[temp]
|
|
for di, low, high in zip(dot_inputs, lows, highs):
|
|
|
|
if len(current_sample) < 1:
|
|
break
|
|
vals = pdme.util.fast_v_calc.fast_vs_for_asymmetric_dipoleses(
|
|
numpy.array([di]), current_sample, temp
|
|
)
|
|
|
|
current_sample = current_sample[
|
|
numpy.all((vals > low) & (vals < high), axis=1)
|
|
]
|
|
return len(current_sample)
|
|
|
|
|
|
class TempAwareRealSpectrumRun:
|
|
"""
|
|
A bayes run given some real data, with potentially variable temperature.
|
|
|
|
Parameters
|
|
----------
|
|
measurements_dict : Dict[float, Sequence[pdme.measurement.DotRangeMeasurement]]
|
|
The dot inputs for this bayes run, in a dictionary indexed by temperatures
|
|
|
|
models_with_names : models_with_names: Sequence[Tuple[str, pdme.model.DipoleModel]],
|
|
|
|
The models to evaluate.
|
|
|
|
actual_model : pdme.model.DipoleModel
|
|
The model which is actually correct.
|
|
|
|
filename_slug : str
|
|
The filename slug to include.
|
|
|
|
run_count: int
|
|
The number of runs to do.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
measurements_dict: Mapping[
|
|
float, Sequence[pdme.measurement.DotRangeMeasurement]
|
|
],
|
|
models_with_names: Sequence[Tuple[str, pdme.model.DipoleModel]],
|
|
filename_slug: str,
|
|
monte_carlo_count: int = 10000,
|
|
monte_carlo_cycles: int = 10,
|
|
target_success: int = 100,
|
|
max_monte_carlo_cycles_steps: int = 10,
|
|
chunksize: int = CHUNKSIZE,
|
|
initial_seed: int = 12345,
|
|
cap_core_count: int = 0,
|
|
) -> None:
|
|
self.measurements_dict = measurements_dict
|
|
self.dot_inputs_dict = {
|
|
k: [(measure.r, measure.f) for measure in measurements]
|
|
for k, measurements in measurements_dict.items()
|
|
}
|
|
|
|
self.dot_inputs_array_dict = {
|
|
k: pdme.measurement.input_types.dot_inputs_to_array(dot_inputs)
|
|
for k, dot_inputs in self.dot_inputs_dict.items()
|
|
}
|
|
|
|
self.models = [model for (_, model) in models_with_names]
|
|
self.model_names = [name for (name, _) in models_with_names]
|
|
self.model_count = len(self.models)
|
|
|
|
self.monte_carlo_count = monte_carlo_count
|
|
self.monte_carlo_cycles = monte_carlo_cycles
|
|
self.target_success = target_success
|
|
self.max_monte_carlo_cycles_steps = max_monte_carlo_cycles_steps
|
|
|
|
self.csv_fields = []
|
|
|
|
self.compensate_zeros = True
|
|
self.chunksize = chunksize
|
|
for name in self.model_names:
|
|
self.csv_fields.extend([f"{name}_success", f"{name}_count", f"{name}_prob"])
|
|
|
|
# for now initialise priors as uniform.
|
|
self.probabilities = [1 / self.model_count] * self.model_count
|
|
|
|
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
|
ff_string = "fast_filter"
|
|
self.filename = f"{timestamp}-{filename_slug}.realdata.{ff_string}.bayesrun.csv"
|
|
self.initial_seed = initial_seed
|
|
|
|
self.cap_core_count = cap_core_count
|
|
|
|
def go(self) -> None:
|
|
with open(self.filename, "a", newline="") as outfile:
|
|
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
|
|
writer.writeheader()
|
|
|
|
low_high_dict = {}
|
|
for temp, measurements in self.measurements_dict.items():
|
|
(
|
|
lows,
|
|
highs,
|
|
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
|
|
measurements
|
|
)
|
|
low_high_dict[temp] = (lows, highs)
|
|
|
|
# define a new seed sequence for each run
|
|
seed_sequence = numpy.random.SeedSequence(self.initial_seed)
|
|
|
|
results = []
|
|
_logger.debug("Going to iterate over models now")
|
|
core_count = multiprocessing.cpu_count() - 1 or 1
|
|
if (self.cap_core_count >= 1) and (self.cap_core_count < core_count):
|
|
core_count = self.cap_core_count
|
|
_logger.info(f"Using {core_count} cores")
|
|
for model_count, (model, model_name) in enumerate(
|
|
zip(self.models, self.model_names)
|
|
):
|
|
_logger.debug(f"Doing model #{model_count}: {model_name}")
|
|
with multiprocessing.Pool(core_count) as pool:
|
|
cycle_count = 0
|
|
cycle_success = 0
|
|
cycles = 0
|
|
while (cycles < self.max_monte_carlo_cycles_steps) and (
|
|
cycle_success <= self.target_success
|
|
):
|
|
_logger.debug(f"Starting cycle {cycles}")
|
|
cycles += 1
|
|
current_success = 0
|
|
cycle_count += self.monte_carlo_count * self.monte_carlo_cycles
|
|
|
|
# generate a seed from the sequence for each core.
|
|
# note this needs to be inside the loop for monte carlo cycle steps!
|
|
# that way we get more stuff.
|
|
seeds = seed_sequence.spawn(self.monte_carlo_cycles)
|
|
|
|
result_func = get_a_result_fast_filter
|
|
|
|
current_success = sum(
|
|
pool.imap_unordered(
|
|
result_func,
|
|
[
|
|
(
|
|
model,
|
|
self.dot_inputs_array_dict,
|
|
low_high_dict,
|
|
self.monte_carlo_count,
|
|
seed,
|
|
)
|
|
for seed in seeds
|
|
],
|
|
self.chunksize,
|
|
)
|
|
)
|
|
|
|
cycle_success += current_success
|
|
_logger.debug(f"current running successes: {cycle_success}")
|
|
results.append((cycle_count, cycle_success))
|
|
|
|
_logger.debug("Done, constructing output now")
|
|
row: Dict[str, Union[int, float, str]] = {}
|
|
|
|
successes: List[float] = []
|
|
counts: List[int] = []
|
|
for model_index, (name, (count, result)) in enumerate(
|
|
zip(self.model_names, results)
|
|
):
|
|
|
|
row[f"{name}_success"] = result
|
|
row[f"{name}_count"] = count
|
|
successes.append(max(result, 0.5))
|
|
counts.append(count)
|
|
|
|
success_weight = sum(
|
|
[
|
|
(succ / count) * prob
|
|
for succ, count, prob in zip(successes, counts, self.probabilities)
|
|
]
|
|
)
|
|
new_probabilities = [
|
|
(succ / count) * old_prob / success_weight
|
|
for succ, count, old_prob in zip(successes, counts, self.probabilities)
|
|
]
|
|
self.probabilities = new_probabilities
|
|
for name, probability in zip(self.model_names, self.probabilities):
|
|
row[f"{name}_prob"] = probability
|
|
_logger.info(row)
|
|
|
|
with open(self.filename, "a", newline="") as outfile:
|
|
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
|
|
writer.writerow(row)
|