deepdog/deepdog/results/__init__.py
Deepak Mallubhotla c881da2837
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
feat: add subset sim probs command for bayes for subset simulation results
2024-05-21 15:54:08 -05:00

154 lines
4.3 KiB
Python

import dataclasses
import re
import typing
import logging
import deepdog.indexify
import pathlib
import csv
from deepdog.results.read_csv import (
parse_bayesrun_row,
BayesrunModelResult,
parse_general_row,
GeneralModelResult,
)
from deepdog.results.filename import parse_file_slug
_logger = logging.getLogger(__name__)
FILENAME_REGEX = re.compile(
r"(?P<timestamp>\d{8}-\d{6})-(?P<filename_slug>.*)\.realdata\.fast_filter\.bayesrun\.csv"
)
SUBSET_SIM_FILENAME_REGEX = re.compile(
r"(?P<filename_slug>.*)-(?:no_adaptive_steps_)?(?P<num_ss_runs>\d+)-nc_(?P<n_c>\d+)-ns_(?P<n_s>\d+)-mmax_(?P<mmax>\d+)\.multi\.subsetsim\.csv"
)
@dataclasses.dataclass
class BayesrunOutputFilename:
timestamp: typing.Optional[str]
filename_slug: str
path: pathlib.Path
@dataclasses.dataclass
class BayesrunOutput:
filename: BayesrunOutputFilename
data: typing.Dict["str", typing.Any]
results: typing.Sequence[BayesrunModelResult]
@dataclasses.dataclass
class GeneralOutput:
filename: BayesrunOutputFilename
data: typing.Dict["str", typing.Any]
results: typing.Sequence[GeneralModelResult]
def _parse_output_filename(file: pathlib.Path) -> BayesrunOutputFilename:
filename = file.name
match = FILENAME_REGEX.match(filename)
if not match:
raise ValueError(f"{filename} was not a valid bayesrun output")
groups = match.groupdict()
return BayesrunOutputFilename(
timestamp=groups["timestamp"], filename_slug=groups["filename_slug"], path=file
)
def _parse_ss_output_filename(file: pathlib.Path) -> BayesrunOutputFilename:
filename = file.name
match = SUBSET_SIM_FILENAME_REGEX.match(filename)
if not match:
raise ValueError(f"{filename} was not a valid subset sim output")
groups = match.groupdict()
return BayesrunOutputFilename(
filename_slug=groups["filename_slug"], path=file, timestamp=None
)
def read_subset_sim_file(
file: pathlib.Path, indexifier: typing.Optional[deepdog.indexify.Indexifier]
) -> GeneralOutput:
parsed_filename = tag = _parse_ss_output_filename(file)
out = GeneralOutput(filename=parsed_filename, data={}, results=[])
out.data.update(dataclasses.asdict(tag))
parsed_tag = parse_file_slug(parsed_filename.filename_slug)
if parsed_tag is None:
_logger.warning(
f"Could not parse {tag} against any matching regexes. Going to skip tag parsing"
)
else:
out.data.update(parsed_tag)
if indexifier is not None:
try:
job_index = parsed_tag["job_index"]
indexified = indexifier.indexify(int(job_index))
out.data.update(indexified)
except KeyError:
# This isn't really that important of an error, apart from the warning
_logger.warning(
f"Parsed tag to {parsed_tag}, and attempted to indexify but no job_index key was found. skipping and moving on"
)
with file.open() as input_file:
reader = csv.DictReader(input_file)
rows = [r for r in reader]
if len(rows) == 1:
row = rows[0]
else:
raise ValueError(f"Confused about having multiple rows in {file.name}")
results = parse_general_row(
row, ("num_finished_runs", "num_runs", None, "estimated_likelihood")
)
out.results = results
return out
def read_output_file(
file: pathlib.Path, indexifier: typing.Optional[deepdog.indexify.Indexifier]
) -> BayesrunOutput:
parsed_filename = tag = _parse_output_filename(file)
out = BayesrunOutput(filename=parsed_filename, data={}, results=[])
out.data.update(dataclasses.asdict(tag))
parsed_tag = parse_file_slug(parsed_filename.filename_slug)
if parsed_tag is None:
_logger.warning(
f"Could not parse {tag} against any matching regexes. Going to skip tag parsing"
)
else:
out.data.update(parsed_tag)
if indexifier is not None:
try:
job_index = parsed_tag["job_index"]
indexified = indexifier.indexify(int(job_index))
out.data.update(indexified)
except KeyError:
# This isn't really that important of an error, apart from the warning
_logger.warning(
f"Parsed tag to {parsed_tag}, and attempted to indexify but no job_index key was found. skipping and moving on"
)
with file.open() as input_file:
reader = csv.DictReader(input_file)
rows = [r for r in reader]
if len(rows) == 1:
row = rows[0]
else:
raise ValueError(f"Confused about having multiple rows in {file.name}")
results = parse_bayesrun_row(row)
out.results = results
return out
__all__ = ["read_output_file", "BayesrunOutput"]