deepdog/deepdog/bayes_run.py
Deepak Mallubhotla 10358287d9
Some checks reported errors
gitea-physics/deepdog/pipeline/head Something is wrong with the build of this commit
Makes frequency cappable
2022-01-30 20:52:32 -06:00

114 lines
4.0 KiB
Python

import pdme.model
from typing import Sequence, Tuple, List
import datetime
import itertools
import csv
import logging
import numpy
import scipy.optimize
import multiprocessing
# TODO: remove hardcode
COST_THRESHOLD = 1e-10
# TODO: It's garbage to have this here duplicated from pdme.
DotInput = Tuple[numpy.typing.ArrayLike, float]
_logger = logging.getLogger(__name__)
def get_a_result(discretisation, dots, index) -> Tuple[Tuple[int, ...], scipy.optimize.OptimizeResult]:
return (index, discretisation.solve_for_index(dots, index))
class BayesRun():
'''
A single Bayes run for a given set of dots.
Parameters
----------
dot_inputs : Sequence[DotInput]
The dot inputs for this bayes run.
discretisations_with_names : Sequence[Tuple(str, pdme.model.Model)]
The models to evaluate.
actual_model_discretisation : pdme.model.Discretisation
The discretisation for the model which is actually correct.
filename_slug : str
The filename slug to include.
run_count: int
The number of runs to do.
'''
def __init__(self, dot_inputs: Sequence[DotInput], discretisations_with_names: Sequence[Tuple[str, pdme.model.Discretisation]], actual_model: pdme.model.Model, filename_slug: str, run_count: int, max_frequency: float = None) -> None:
self.dot_inputs = dot_inputs
self.discretisations = [disc for (_, disc) in discretisations_with_names]
self.model_names = [name for (name, _) in discretisations_with_names]
self.actual_model = actual_model
self.model_count = len(self.discretisations)
self.run_count = run_count
self.csv_fields = ["dipole_moment", "dipole_location", "dipole_frequency"]
self.compensate_zeros = True
for name in self.model_names:
self.csv_fields.extend([f"{name}_success", f"{name}_count", f"{name}_prob"])
self.probabilities = [1 / self.model_count] * self.model_count
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
self.filename = f"{timestamp}-{filename_slug}.csv"
self.max_frequency = max_frequency
def go(self) -> None:
with open(self.filename, "a", newline="") as outfile:
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
writer.writeheader()
for run in range(1, self.run_count + 1):
frequency: float = run
if self.max_frequency is not None and self.max_frequency > 1:
rng = numpy.random.default_rng()
frequency = rng.uniform(1, self.max_frequency)
dipoles = self.actual_model.get_dipoles(frequency)
dots = dipoles.get_dot_measurements(self.dot_inputs)
_logger.info(f"Going to work on dipole at {dipoles.dipoles}")
results = []
_logger.debug("Going to iterate over discretisations now")
for disc_count, discretisation in enumerate(self.discretisations):
_logger.debug(f"Doing discretisation #{disc_count}")
with multiprocessing.Pool(multiprocessing.cpu_count() - 1 or 1) as pool:
results.append(pool.starmap(get_a_result, zip(itertools.repeat(discretisation), itertools.repeat(dots), discretisation.all_indices())))
_logger.debug("Done, constructing output now")
row = {
"dipole_moment": dipoles.dipoles[0].p,
"dipole_location": dipoles.dipoles[0].s,
"dipole_frequency": dipoles.dipoles[0].w
}
successes: List[int] = []
for model_index, (name, result) in enumerate(zip(self.model_names, results)):
count = 0
success = 0
for idx, val in result:
count += 1
if val.success and val.cost <= COST_THRESHOLD:
success += 1
row[f"{name}_success"] = success
row[f"{name}_count"] = count
successes.append(max(success, 1))
success_weight = sum([succ * prob for succ, prob in zip(successes, self.probabilities)])
new_probabilities = [succ * old_prob / success_weight for succ, old_prob in zip(successes, self.probabilities)]
self.probabilities = new_probabilities
for name, probability in zip(self.model_names, self.probabilities):
row[f"{name}_prob"] = probability
_logger.info(row)
with open(self.filename, "a", newline="") as outfile:
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
writer.writerow(row)