diff --git a/Makefile b/Makefile index 6dc6bee..dc5bd88 100644 --- a/Makefile +++ b/Makefile @@ -1,6 +1,6 @@ ### Build tools # -LATEXMK := latexmk -pdflatex="luahblatex %O %S" -pdf -dvi- -ps- -quiet -logfilewarninglist +LATEXMK := latexmk -pdflatex="lualatex %O %S" -pdf -dvi- -ps- -quiet -logfilewarninglist WS := wolframscript -f ### Directory variables @@ -11,7 +11,7 @@ CALC_DIR := calc ### Here we go # -OUT_PDF:= $(PDF_DIR)/notes.pdf +OUT_PDF:= $(PDF_DIR)/notes.pdf $(PDF_DIR)/identifying_downturn.pdf .PHONY: all all: $(OUT_PDF) @@ -20,7 +20,7 @@ all: $(OUT_PDF) # ## setup main pdf deps as variable that subdirs can add to -MAIN_PDF_DEPS := bibliography.bib +COMMON_PDF_DEPS := bibliography.bib ## Defining common directory recipes $(PDF_DIR): @@ -36,10 +36,15 @@ $(CALC_DIR): FIGURES := ## Making main.pdf and other pdfs # -$(PDF_DIR)/notes.pdf: notes.tex $(MAIN_PDF_DEPS) | $(PDF_DIR) $(FIGURES) +$(PDF_DIR)/notes.pdf: notes.tex $(COMMON_PDF_DEPS) | $(PDF_DIR) $(FIGURES) $(LATEXMK) $( \lambda_F$ the $T_1(z)$ curve has a very different flat shape at the very high temperature, which ultimately leads to the downturn. + +\begin{figure}[htp] + \centering + \includegraphics[width=\linewidth]{t1VsZDirtyCase-no-problems} + \caption{$T_1(z)$, at two different temperatures.} \label{fig:t1vszdirty} +\end{figure} + +\begin{figure}[htp] + \centering + \includegraphics[width=\linewidth]{t1VsZcleanCase-bad} + \caption{$T_1(z)$, at two different temperatures.} \label{fig:t1vszclean} +\end{figure} + +I looked at where that might come from. +We have that $T_1 \propto \frac{1}{\chi}$, and +\begin{equation} + \chi_{B,zz} \propto \int_0^\infty \dd{u} u^2 e^{-2 u z} \Im r_s(u), +\end{equation} +in a regime where $u \gg \frac{1}{\lambda}$ for vacuum wavelength $\lambda$. +This is always the regime we care about. +So $\chi(z) \approx \Im r_s(\frac{1}{z})$ or so. +I plotted $\Im r_s(u)$ in \cref{fig:imrs}, and it doesn't really have any of the unusual features we might exepect. +That figure is pretty ugly, but the takeaway is that for $u > 0.2 \lambda_F$, all that matters is the temperature. +However, for $u < 0.2 \lambda_F$ the dirty and clean lines start to split, and for small enough $u$ the difference between the higher and lower temperature cases is less important than the clean-dirty difference. +That makes sense, and doesn't at all explain why $T_1$ is problematic. + +\begin{figure}[htp] + \centering + \includegraphics[width=\linewidth]{Im rs-no-weirdness} + \caption{$\Im r_s$, showing no weirdness.} \label{fig:imrs} +\end{figure} + +So that leaves the integral as a problem. +I haven't been able to excise the issue yet though, either by increasing precision or rewriting the integral different ways to pull $z$ out. +Using something like +\begin{equation} + \chi_{B,zz} \propto \frac{1}{z^3} \int_0^\infty \dd{u'} u'^2 e^{-2 u'} \Im r_s(\frac{u'}{z}) +\end{equation} +should be numerically nicer, but I get about the same answers (with Mathematica's integral handler internally doing something similar to that transform anyway?). +The problem is definitely still apparent in the $\chi$ calculation, which is plotted in \cref{fig:chi}. +So I'm currently confused on this. + +\begin{figure}[htp] + \centering + \includegraphics[width=\linewidth]{chiVsZCleanCaseWithProblem} + \caption{$\chi(z)$, showing the same issue as $T_1$ (as expected).} \label{fig:chi} +\end{figure} + +% \printbibliography + +\end{document} diff --git a/notes.tex b/notes.tex index c4e32e6..5f8da83 100644 --- a/notes.tex +++ b/notes.tex @@ -15,7 +15,7 @@ \usepackage{cleveref} -\title{Noise on ewjn mag noise} +\title{Notes on ewjn mag noise} \addbibresource{./bibliography.bib}