\documentclass{article} %other packages \usepackage{amsmath} \usepackage{amssymb} \usepackage{physics} \usepackage[ style=phys, articletitle=false, biblabel=brackets, chaptertitle=false, pageranges=false, url=true ]{biblatex} \usepackage{graphicx} \usepackage{todonotes} \usepackage{siunitx} \usepackage{cleveref} \title{Notes on ewjn mag noise} \addbibresource{./bibliography.bib} \graphicspath{{./figures/}} \newcommand{\vf}{v_{\mathrm{F}}} \newcommand{\qf}{q_{\mathrm{F}}} \begin{document} \maketitle The reproduction of the magnetic noise in \cite{QubitRelax} is below, in \cref{fig:lukemag}. The important point for reproducing the figure in Luke's paper is that I did not use the expression for $r_s$ there. Instead, I used eqs 2.20 and 2.26 in Ford-Weber\cite{Ford1984}: \begin{align} \zeta_s(u) &= 2 i \int_0^\infty \dd{y} \frac{1}{\epsilon_t(\sqrt{u^2 + y^2}) - u^2 - y^2} \\ r_s(u) &= \frac{\zeta_s(u) - \frac{\pi}{i u}}{\zeta_s(u) + \frac{\pi}{i u}}, \end{align} up to a constant out front which I pulled to outer code. Additionally, the other important thing is that every parameter in the caption of Luke's figure 3 are are actually in radians per second, except for $\nu$ (I think). The collision frequency $\nu$ is the odd one, because in the expression for $\epsilon$, the local limit reduces to the Drude case precisely with $\tau = \frac{1}{\nu}$. I was always under the impression that the Drude $\tau$ just carried units of seconds, rather than seconds per radian, but now I'm not sure (there are after all $\tau \omega$ terms which don't look ``unitless''). That all implies that $\tau = \left(6 \pi \right)^{-1} \times \SI{e-12}{\s}$. \begin{figure}[htp] \centering \includegraphics[width=\linewidth]{lukemagnoise} \caption{$T_1(z)$, dotted is the nonlocal case and solid is the local case.} \label{fig:lukemag} \end{figure} \printbibliography \end{document}