Adds some tests whatever
Some checks failed
gitea-physics/pathfinder/pipeline/head There was a failure building this commit
Some checks failed
gitea-physics/pathfinder/pipeline/head There was a failure building this commit
This commit is contained in:
parent
3a73fee801
commit
a7fe2455a5
@ -42,6 +42,15 @@ class DotMeasurement():
|
||||
|
||||
return (self._alpha(p, s))**2 * self._b(w)
|
||||
|
||||
def mod_factor_for_point(self, pt: numpy.ndarray) -> float:
|
||||
'''
|
||||
modification factor for cost function.
|
||||
'''
|
||||
s = pt[3:6] # are we'll only ever work in 3d.
|
||||
|
||||
diff = self.r - s
|
||||
return numpy.linalg.norm(diff)**2
|
||||
|
||||
def _alpha(self, p: numpy.ndarray, s: numpy.ndarray) -> float:
|
||||
diff = self.r - s
|
||||
return p.dot(diff) / (numpy.linalg.norm(diff)**3)
|
||||
@ -57,6 +66,23 @@ class DotMeasurement():
|
||||
chunked_pts = [pts[i: i + pt_length] for i in range(0, len(pts), pt_length)]
|
||||
return sum(self.v_for_point(pt) for pt in chunked_pts) - self.v
|
||||
|
||||
def cost2(self, pts: numpy.ndarray) -> float:
|
||||
# 7 because dipole in 3d has 7 degrees of freedom.
|
||||
pt_length = 7
|
||||
# creates numpy.ndarrays in groups of pt_length.
|
||||
# Will throw problems for irregular points, but that's okay for now.
|
||||
chunked_pts = [pts[i: i + pt_length] for i in range(0, len(pts), pt_length)]
|
||||
|
||||
mod_factor = numpy.prod([self.mod_factor_for_point(pt) for pt in chunked_pts])
|
||||
return (sum(self.v_for_point(pt) for pt in chunked_pts) - self.v) * mod_factor
|
||||
|
||||
def simple_cost(self, pts: numpy.ndarray) -> float:
|
||||
# for reduced case, a is constant
|
||||
pt_length = 2
|
||||
|
||||
chunked_pts = [pts[i: i + pt_length] for i in range(0, len(pts), pt_length)]
|
||||
return sum(pt[0] * self._b(pt[1]) for pt in chunked_pts) - self.v
|
||||
|
||||
def jac_pt(self, pt: numpy.ndarray) -> numpy.ndarray:
|
||||
p = pt[0:3] # hardcoded here because chances
|
||||
s = pt[3:6] # are we'll only ever work in 3d.
|
||||
@ -77,6 +103,39 @@ class DotMeasurement():
|
||||
|
||||
return numpy.concatenate((p_divs, r_divs, w_div), axis=None)
|
||||
|
||||
def jac_pt2(self, pt: numpy.ndarray, cost, mod_factor: float) -> numpy.ndarray:
|
||||
p = pt[0:3] # hardcoded here because chances
|
||||
s = pt[3:6] # are we'll only ever work in 3d.
|
||||
w = pt[6]
|
||||
|
||||
diff = self.r - s
|
||||
alpha = self._alpha(p, s)
|
||||
b = self._b(w)
|
||||
|
||||
p_divs = (2 * alpha * diff / (numpy.linalg.norm(diff)**3) * b) * mod_factor
|
||||
|
||||
s_divs = ((-p / (numpy.linalg.norm(diff)**3) + 3 * p.dot(diff) * diff / (numpy.linalg.norm(diff)**5)) * 2 * alpha * b) * mod_factor
|
||||
s_divs_mod = -2 * cost * mod_factor * diff / numpy.linalg.norm(diff)**2
|
||||
|
||||
f2 = self.f**2
|
||||
w2 = w**2
|
||||
|
||||
w_div = (alpha**2 * (1 / numpy.pi) * ((f2 - w2) / ((f2 + w2)**2))) * mod_factor
|
||||
|
||||
return numpy.concatenate((p_divs, s_divs + s_divs_mod, w_div), axis=None)
|
||||
|
||||
def simple_jac_pt(self, pt: numpy.ndarray) -> numpy.ndarray:
|
||||
a = pt[0]
|
||||
w = pt[1]
|
||||
|
||||
f2 = self.f**2
|
||||
w2 = w**2
|
||||
|
||||
b = self._b(w)
|
||||
w_div = a * (1 / numpy.pi) * ((f2 - w2) / ((f2 + w2)**2))
|
||||
|
||||
return numpy.concatenate((b, w_div), axis=None)
|
||||
|
||||
def jac(self, pts: numpy.ndarray) -> numpy.ndarray:
|
||||
# 7 because oscillating dipole in 3d has 7 degrees of freedom.
|
||||
pt_length = 7
|
||||
@ -85,3 +144,20 @@ class DotMeasurement():
|
||||
chunked_pts = [pts[i: i + pt_length] for i in range(0, len(pts), pt_length)]
|
||||
|
||||
return numpy.append([], [self.jac_pt(pt) for pt in chunked_pts])
|
||||
|
||||
def jac2(self, pts: numpy.ndarray) -> numpy.ndarray:
|
||||
# 7 because oscillating dipole in 3d has 7 degrees of freedom.
|
||||
pt_length = 7
|
||||
# creates numpy.ndarrays in groups of pt_length.
|
||||
# Will throw problems for irregular points, but that's okay for now.
|
||||
chunked_pts = [pts[i: i + pt_length] for i in range(0, len(pts), pt_length)]
|
||||
|
||||
cost = self.cost(pts)
|
||||
mod_factor = numpy.prod([self.mod_factor_for_point(pt) for pt in chunked_pts])
|
||||
return numpy.append([], [self.jac_pt2(pt, cost, mod_factor) for pt in chunked_pts])
|
||||
|
||||
def simple_jac(self, pts: numpy.ndarray) -> numpy.ndarray:
|
||||
pt_length = 2
|
||||
chunked_pts = [pts[i: i + pt_length] for i in range(0, len(pts), pt_length)]
|
||||
|
||||
return numpy.append([], [self.simple_jac_pt(pt) for pt in chunked_pts])
|
||||
|
@ -31,15 +31,96 @@ class DotOscillatingDipoleModel():
|
||||
|
||||
return costs_to_return
|
||||
|
||||
def costs2(self) -> Callable[[numpy.ndarray], numpy.ndarray]:
|
||||
def costs_to_return(pt: numpy.ndarray) -> numpy.ndarray:
|
||||
return numpy.array([dot.cost2(pt) for dot in self.dots])
|
||||
|
||||
return costs_to_return
|
||||
|
||||
def simple_costs(self) -> Callable[[numpy.ndarray], numpy.ndarray]:
|
||||
def costs_to_return(pt: numpy.ndarray) -> numpy.ndarray:
|
||||
return numpy.array([dot.simple_cost(pt) for dot in self.dots])
|
||||
|
||||
return costs_to_return
|
||||
|
||||
def jac(self) -> Callable[[numpy.ndarray], numpy.ndarray]:
|
||||
def jac_to_return(pts: numpy.ndarray) -> numpy.ndarray:
|
||||
return numpy.array([dot.jac(pts) for dot in self.dots])
|
||||
|
||||
return jac_to_return
|
||||
|
||||
def jac2(self) -> Callable[[numpy.ndarray], numpy.ndarray]:
|
||||
def jac_to_return(pts: numpy.ndarray) -> numpy.ndarray:
|
||||
return numpy.array([dot.jac2(pts) for dot in self.dots])
|
||||
|
||||
return jac_to_return
|
||||
|
||||
def simple_jac(self) -> Callable[[numpy.ndarray], numpy.ndarray]:
|
||||
def jac_to_return(pts: numpy.ndarray) -> numpy.ndarray:
|
||||
return numpy.array([dot.simple_jac(pts) for dot in self.dots])
|
||||
|
||||
return jac_to_return
|
||||
|
||||
def sol(self, initial_dipole=(0.1, 0.1, 0.1), initial_position=(.1, .1, .1), initial_frequency=1, use_root=True):
|
||||
initial = numpy.tile(numpy.concatenate((initial_dipole, initial_position, initial_frequency), axis=None), self.n)
|
||||
|
||||
result = scipy.optimize.least_squares(self.costs(), initial, jac=self.jac(), ftol=1e-15, gtol=3e-16)
|
||||
result.pathfinder_x = pathfinder.model.oscillating.util.normalize_oscillating_dipole_list(result.x)
|
||||
return result
|
||||
|
||||
def sol2(self, initial_dipole=(0.1, 0.1, 0.1), initial_position=(.1, .1, .1), initial_frequency=1, use_root=True):
|
||||
initial = numpy.tile(numpy.concatenate((initial_dipole, initial_position, initial_frequency), axis=None), self.n)
|
||||
|
||||
result = scipy.optimize.least_squares(self.costs2(), initial, jac=self.jac2(), ftol=1e-15, gtol=3e-16)
|
||||
result.pathfinder_x = pathfinder.model.oscillating.util.normalize_oscillating_dipole_list(result.x)
|
||||
return result
|
||||
|
||||
def simple_sol(self, initial_a=0.1, initial_frequency=1):
|
||||
initial = numpy.tile(numpy.concatenate((initial_a, initial_frequency), axis=None), self.n)
|
||||
|
||||
result = scipy.optimize.least_squares(self.simple_costs(), initial, jac=self.simple_jac(), ftol=1e-15, gtol=3e-16)
|
||||
result.pathfinder_x = result.x
|
||||
return result
|
||||
|
||||
def sol_simple(self, costs, initial, **kwargs):
|
||||
initial = numpy.tile(numpy.concatenate(initial, axis=None), self.n)
|
||||
|
||||
result = scipy.optimize.least_squares(self.costs(), initial, jac=kwargs["jac"], ftol=kwargs["ftol"], gtol=kwargs["gtol"])
|
||||
result.old_fun = result.fun
|
||||
result.fun = numpy.sum(result.fun**2, axis=None)
|
||||
result.pathfinder_x = pathfinder.model.oscillating.util.normalize_oscillating_dipole_list(result.x)
|
||||
return result
|
||||
|
||||
def sol_basinhopping(self, initial_dipole=(0.1, 0.1, 0.1), initial_position=(.1, .1, .1), initial_frequency=1):
|
||||
initial = numpy.tile(numpy.concatenate((initial_dipole, initial_position, initial_frequency), axis=None), self.n)
|
||||
|
||||
def summed_costs(pt):
|
||||
curr_cost = self.costs()(pt)
|
||||
|
||||
squared_cost = numpy.sum(curr_cost**2, axis=None)
|
||||
gradient = .5 * numpy.matmul(numpy.transpose(self.jac()(pt)), curr_cost)
|
||||
|
||||
return (squared_cost, gradient)
|
||||
|
||||
minimizer_kwargs = {"method": "BFGS", "jac": True}
|
||||
|
||||
result = scipy.optimize.basinhopping(summed_costs, initial, niter=1000, minimizer_kwargs=minimizer_kwargs)
|
||||
|
||||
result.pathfinder_x = pathfinder.model.oscillating.util.normalize_oscillating_dipole_list(result.x)
|
||||
return result
|
||||
|
||||
def sol_basinhopping_big(self, initial_dipole=(0.1, 0.1, 0.1), initial_position=(.1, .1, .1), initial_frequency=1):
|
||||
initial = numpy.tile(numpy.concatenate((initial_dipole, initial_position, initial_frequency), axis=None), self.n)
|
||||
|
||||
minimizer_kwargs = {
|
||||
"method": self.sol_simple,
|
||||
"jac": self.jac(),
|
||||
"options": {
|
||||
"ftol": 1e-15,
|
||||
"gtol": 3e-1,
|
||||
}
|
||||
}
|
||||
|
||||
result = scipy.optimize.basinhopping(self.costs(), initial, niter=1000, minimizer_kwargs=minimizer_kwargs)
|
||||
result.pathfinder_x = pathfinder.model.oscillating.util.normalize_oscillating_dipole_list(result.x)
|
||||
return result
|
||||
|
@ -0,0 +1,57 @@
|
||||
import itertools
|
||||
import logging
|
||||
import multiprocessing
|
||||
import numpy
|
||||
import pathfinder.model.oscillating
|
||||
|
||||
|
||||
def print_result(msg, result):
|
||||
logging.info(msg)
|
||||
logging.info(f"\tResult: {result.pathfinder_x}")
|
||||
logging.info(f"\tSuccess: {result.success}. {result.message}")
|
||||
try:
|
||||
logging.info(f"\tFunc evals: {result.nfev}")
|
||||
except AttributeError:
|
||||
pass
|
||||
try:
|
||||
logging.info(f"\tJacb evals: {result.njev}")
|
||||
except AttributeError:
|
||||
pass
|
||||
|
||||
|
||||
def try_initial_position(model, expected_result, initial_pos):
|
||||
res = model.sol_basinhopping(initial_position=initial_pos)
|
||||
|
||||
return res.pathfinder_x
|
||||
|
||||
|
||||
def main():
|
||||
logging.info("Running script...")
|
||||
dot_inputs = list(itertools.chain.from_iterable(
|
||||
(([0 + o, 0, .01], f), ([0 + o, -1, 0], f), ([-1 + o, 0, -.01], f), ([-1 + o, -1, .01], f)) for f in numpy.arange(1, 10, .05) for o in (0, 0.5)
|
||||
))
|
||||
|
||||
dipole = pathfinder.model.oscillating.OscillatingDipole([1, 2, 3], [0, 0, -1], 7)
|
||||
expected_result = numpy.array([1, 2, 3, 0, 0, -1, 7])
|
||||
dipole_arrangement = pathfinder.model.oscillating.OscillatingDipoleArrangement([dipole])
|
||||
dot_measurements = dipole_arrangement.get_dot_measurements(dot_inputs)
|
||||
|
||||
model = pathfinder.model.oscillating.DotOscillatingDipoleModel(dot_measurements, 1)
|
||||
logging.info("Finished setting up model")
|
||||
|
||||
results = []
|
||||
rb = -4
|
||||
ru = 5
|
||||
points_to_try = [(model, expected_result, (0.01 + dx, 0.01 + dy, 0.01 + dz)) for dx in range(rb, ru, 3) for dy in range(rb, ru, 3) for dz in range(rb, ru, 2)]
|
||||
logging.info(f"Will have {len(points_to_try)} points to try")
|
||||
logging.info("creating pool...")
|
||||
with multiprocessing.Pool() as pool:
|
||||
results = pool.starmap(try_initial_position, points_to_try)
|
||||
logging.info(results)
|
||||
final_values = [r for r in results if r is not None]
|
||||
logging.info(final_values)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
logging.basicConfig(level=logging.DEBUG)
|
||||
main()
|
83
tests/model/oscillating/test_basinhopping.py
Normal file
83
tests/model/oscillating/test_basinhopping.py
Normal file
@ -0,0 +1,83 @@
|
||||
import numpy
|
||||
import pathfinder.model.oscillating
|
||||
import itertools
|
||||
|
||||
|
||||
def chunk_n_sort(pts):
|
||||
pt_length = 7
|
||||
chunked_pts = [pts[i: i + pt_length] for i in range(0, len(pts), pt_length)]
|
||||
|
||||
return chunked_pts
|
||||
|
||||
|
||||
def print_result(msg, result):
|
||||
print(msg)
|
||||
print(f"\tResult: {result.pathfinder_x}")
|
||||
# print(f"\tSuccess: {result.success}. {result.message}")
|
||||
try:
|
||||
print(f"\tFunc evals: {result.nfev}")
|
||||
except AttributeError:
|
||||
pass
|
||||
try:
|
||||
print(f"\tJacb evals: {result.njev}")
|
||||
except AttributeError:
|
||||
pass
|
||||
|
||||
|
||||
def test_one_dipole_six_dot_two_frequencies_bh():
|
||||
# setup
|
||||
dot_inputs = [
|
||||
([0, 0, .01], 5), ([-1, 0, -.01], 5), ([-2, 0, -.01], 5), ([0, -1, .01], 5), ([-1, -1, 0], 5), ([-2, -1, 0], 5),
|
||||
([0, 0, .01], 1), ([-1, 0, -.01], 1), ([-2, 0, -.01], 1), ([0, -1, .01], 1), ([-1, -1, 0], 1), ([-2, -1, 0], 1),
|
||||
]
|
||||
dipole = pathfinder.model.oscillating.OscillatingDipole([1, 2, 3], [0, 4, -1], 7)
|
||||
expected_result = numpy.array([1, 2, 3, 0, 4, -1, 7])
|
||||
dipole_arrangement = pathfinder.model.oscillating.OscillatingDipoleArrangement([dipole])
|
||||
dot_measurements = dipole_arrangement.get_dot_measurements(dot_inputs)
|
||||
|
||||
model = pathfinder.model.oscillating.DotOscillatingDipoleModel(dot_measurements, 1)
|
||||
res = model.sol_basinhopping()
|
||||
|
||||
print_result("one oscillating dipole six dots", res)
|
||||
print(res.lowest_optimization_result)
|
||||
# assert res.lowest_optimization_result.success, "The solution for a single dipole and six dots should have succeeded."
|
||||
numpy.testing.assert_allclose(res.pathfinder_x, expected_result, err_msg="Dipole wasn't as expected.", rtol=1e-6, atol=1e-6)
|
||||
|
||||
|
||||
def test_one_dipole_six_dot_two_frequencies_bhbig():
|
||||
# setup
|
||||
dot_inputs = [
|
||||
([0, 0, .01], 5), ([-1, 0, -.01], 5), ([-2, 0, -.01], 5), ([0, -1, .01], 5), ([-1, -1, 0], 5), ([-2, -1, 0], 5),
|
||||
([0, 0, .01], 1), ([-1, 0, -.01], 1), ([-2, 0, -.01], 1), ([0, -1, .01], 1), ([-1, -1, 0], 1), ([-2, -1, 0], 1),
|
||||
]
|
||||
dipole = pathfinder.model.oscillating.OscillatingDipole([1, 2, 3], [0, 4, -1], 7)
|
||||
expected_result = numpy.array([1, 2, 3, 0, 4, -1, 7])
|
||||
dipole_arrangement = pathfinder.model.oscillating.OscillatingDipoleArrangement([dipole])
|
||||
dot_measurements = dipole_arrangement.get_dot_measurements(dot_inputs)
|
||||
|
||||
model = pathfinder.model.oscillating.DotOscillatingDipoleModel(dot_measurements, 1)
|
||||
res = model.sol_basinhopping_big()
|
||||
|
||||
print_result("one oscillating dipole six dots", res)
|
||||
print(res.lowest_optimization_result)
|
||||
# assert res.lowest_optimization_result.success, "The solution for a single dipole and six dots should have succeeded."
|
||||
numpy.testing.assert_allclose(res.pathfinder_x, expected_result, err_msg="Dipole wasn't as expected.", rtol=1e-6, atol=1e-6)
|
||||
|
||||
|
||||
def test_one_dipole_four_dot_ten_frequencies_bhbig():
|
||||
# setup
|
||||
dot_inputs = itertools.chain.from_iterable(
|
||||
(([0 + o, 0, .01], f), ([0 + o, -1, 0], f), ([-1 + o, 0, -.01], f), ([-1 + o, -1, .01], f), ([-2 + o, 0, -.01], f), ([-2 + o, -1, .01], f)) for f in numpy.arange(1, 10, .1) for o in (0, 0.2)
|
||||
)
|
||||
dipole = pathfinder.model.oscillating.OscillatingDipole([1, 2, 3], [0, 4, -1], 7)
|
||||
expected_result = numpy.array([1, 2, 3, 0, 4, -1, 7])
|
||||
dipole_arrangement = pathfinder.model.oscillating.OscillatingDipoleArrangement([dipole])
|
||||
dot_measurements = dipole_arrangement.get_dot_measurements(dot_inputs)
|
||||
|
||||
model = pathfinder.model.oscillating.DotOscillatingDipoleModel(dot_measurements, 1)
|
||||
res = model.sol_basinhopping_big()
|
||||
|
||||
print_result("one oscillating dipole four dots", res)
|
||||
print(res)
|
||||
print(res.lowest_optimization_result)
|
||||
numpy.testing.assert_allclose(res.pathfinder_x, expected_result, err_msg="Dipole wasn't as expected.", rtol=1e-6, atol=1e-6)
|
@ -1,5 +1,7 @@
|
||||
import numpy
|
||||
import pathfinder.model.oscillating
|
||||
import itertools
|
||||
import pytest
|
||||
|
||||
|
||||
def chunk_n_sort(pts):
|
||||
@ -107,3 +109,83 @@ def test_two_dipole_eighteen_dot_two_frequencies_morerealistic():
|
||||
print_result("two oscillating dipole six dots", res)
|
||||
assert res.success, "The solution for two dipole and six dots should have succeeded."
|
||||
numpy.testing.assert_allclose(res.pathfinder_x, expected_result, err_msg="Dipole wasn't as expected.", rtol=1e-6, atol=1e-6)
|
||||
|
||||
|
||||
def test_one_dipole_four_dot_ten_frequencies():
|
||||
# setup
|
||||
dot_inputs = itertools.chain.from_iterable(
|
||||
(([0 + o, 0, .01], f), ([0 + o, -1, 0], f), ([-1 + o, 0, -.01], f), ([-1 + o, -1, .01], f), ([-2 + o, 0, -.01], f), ([-2 + o, -1, .01], f)) for f in numpy.arange(1, 10, .1) for o in (0, 0.01)
|
||||
)
|
||||
dipole = pathfinder.model.oscillating.OscillatingDipole([1, 2, 3], [0, 4, -1], 7)
|
||||
expected_result = numpy.array([1, 2, 3, 0, 4, -1, 7])
|
||||
dipole_arrangement = pathfinder.model.oscillating.OscillatingDipoleArrangement([dipole])
|
||||
dot_measurements = dipole_arrangement.get_dot_measurements(dot_inputs)
|
||||
|
||||
model = pathfinder.model.oscillating.DotOscillatingDipoleModel(dot_measurements, 1)
|
||||
res = model.sol(initial_position=(.1, .1, .1))
|
||||
|
||||
print_result("one oscillating dipole four dots", res)
|
||||
print(model.jac()(res.x))
|
||||
assert res.success, "The solution for one dipole and four dots should have succeeded."
|
||||
numpy.testing.assert_allclose(res.pathfinder_x, expected_result, err_msg="Dipole wasn't as expected.", rtol=1e-6, atol=1e-6)
|
||||
|
||||
|
||||
def test_two_dipole_four_dot_ten_frequencies():
|
||||
# setup
|
||||
dot_inputs = itertools.chain.from_iterable(
|
||||
(([0 + o, 0, .01], f), ([0 + o, -1, 0], f), ([-1 + o, 0, -.01], f), ([-1 + o, -1, .01], f)) for f in range(1, 10) for o in (0, .5)
|
||||
)
|
||||
dipole = pathfinder.model.oscillating.OscillatingDipole([1, 2, 3], [0, 4, -1], 7)
|
||||
dipole2 = pathfinder.model.oscillating.OscillatingDipole([-1, 2, 0], [-1, 2, 1], 4)
|
||||
expected_result = numpy.array([1, -2, 0, -1, 2, 1, 4, 1, 2, 3, 0, 4, -1, 7])
|
||||
dipole_arrangement = pathfinder.model.oscillating.OscillatingDipoleArrangement([dipole, dipole2])
|
||||
dot_measurements = dipole_arrangement.get_dot_measurements(dot_inputs)
|
||||
|
||||
model = pathfinder.model.oscillating.DotOscillatingDipoleModel(dot_measurements, 2)
|
||||
res = model.sol()
|
||||
|
||||
print_result("two oscillating dipole four dots", res)
|
||||
assert res.success, "The solution for two dipole and two dots should have succeeded."
|
||||
numpy.testing.assert_allclose(res.pathfinder_x, expected_result, err_msg="Dipole wasn't as expected.", rtol=1e-6, atol=1e-6)
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Never actually works.")
|
||||
def test_three_dipole_four_dot_ten_frequencies_wrongcount():
|
||||
# setup
|
||||
dot_inputs = itertools.chain.from_iterable(
|
||||
(([0 + o, 0, .01], f), ([0 + o, -1, 0], f), ([-1 + o, 0, -.01], f), ([-1 + o, -1, .01], f)) for f in range(1, 10) for o in (0, .5)
|
||||
)
|
||||
dipole = pathfinder.model.oscillating.OscillatingDipole([1, 2, 3], [0, 4, -1], 7)
|
||||
dipole2 = pathfinder.model.oscillating.OscillatingDipole([2, 5, 0], [1, 6, 1], 2)
|
||||
dipole3 = pathfinder.model.oscillating.OscillatingDipole([-1, 2, 0], [-1, 2, 1], 4)
|
||||
expected_result = numpy.array([2, 5, 0, 1, 6, 1, 2, 1, -2, 0, -1, 2, 1, 4, 1, 2, 3, 0, 4, -1, 7])
|
||||
dipole_arrangement = pathfinder.model.oscillating.OscillatingDipoleArrangement([dipole, dipole2, dipole3])
|
||||
dot_measurements = dipole_arrangement.get_dot_measurements(dot_inputs)
|
||||
|
||||
model = pathfinder.model.oscillating.DotOscillatingDipoleModel(dot_measurements, 2)
|
||||
res = model.sol()
|
||||
|
||||
print_result("three but thinks two oscillating dipole four dots", res)
|
||||
# assert res.success, "The solution for two dipole and two dots should have succeeded."
|
||||
numpy.testing.assert_allclose(res.pathfinder_x, expected_result, err_msg="Dipole wasn't as expected.", rtol=1e-6, atol=1e-6)
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Never actually works.")
|
||||
def test_three_dipole_four_dot_twenty_frequencies_rightcount():
|
||||
# setup
|
||||
dot_inputs = itertools.chain.from_iterable(
|
||||
(([0 + o, 0, .01], f), ([0 + o, -1, 0], f), ([-1 + o, 0, -.01], f), ([-1 + o, -1, .01], f)) for f in numpy.arange(0.2, 10, .2) for o in (0, .5)
|
||||
)
|
||||
dipole = pathfinder.model.oscillating.OscillatingDipole([1, 2, 3], [0, 4, -1], 7)
|
||||
dipole2 = pathfinder.model.oscillating.OscillatingDipole([2, 5, 0], [1, 6, 1], 2)
|
||||
dipole3 = pathfinder.model.oscillating.OscillatingDipole([-1, 2, 0], [-1, 2, 1], 4)
|
||||
expected_result = numpy.array([2, 5, 0, 1, 6, 1, 2, 1, -2, 0, -1, 2, 1, 4, 1, 2, 3, 0, 4, -1, 7])
|
||||
dipole_arrangement = pathfinder.model.oscillating.OscillatingDipoleArrangement([dipole, dipole2, dipole3])
|
||||
dot_measurements = dipole_arrangement.get_dot_measurements(dot_inputs)
|
||||
|
||||
model = pathfinder.model.oscillating.DotOscillatingDipoleModel(dot_measurements, 3)
|
||||
res = model.sol(initial_position=(.1, 3, .1))
|
||||
|
||||
print_result("three oscillating dipole four dots", res)
|
||||
# assert res.success, "The solution for two dipole and two dots should have succeeded."
|
||||
numpy.testing.assert_allclose(res.pathfinder_x, expected_result, err_msg="Dipole wasn't as expected.", rtol=1e-6, atol=1e-6)
|
||||
|
Reference in New Issue
Block a user