more robust tests and slight tweaks to algorithm
This commit is contained in:
parent
0c8527704d
commit
c51c477579
@ -1,25 +1,29 @@
|
||||
import numpy
|
||||
|
||||
|
||||
def find_sols(cost_array, jacobian, step_size=0.001, max_iterations=5, initial=(0, 0), desired_cost=1e-6, step_size_tries=10):
|
||||
def find_sols(cost_array, jacobian, step_size=0.001, max_iterations=5, initial=(0, 0), desired_cost=1e-6, step_size_tries=30):
|
||||
desired_cost_squared = desired_cost**2
|
||||
current = numpy.array(initial)
|
||||
iterations = 0
|
||||
curr_cost = numpy.array(cost_array(current))
|
||||
|
||||
def total_cost(x):
|
||||
cost = numpy.array(cost_array(x))
|
||||
return cost.dot(cost)
|
||||
|
||||
while iterations < max_iterations:
|
||||
curr_cost = numpy.array(cost_array(current))
|
||||
if curr_cost.dot(curr_cost) < desired_cost_squared:
|
||||
return ("Finished early", iterations, current)
|
||||
gradient = .5 * numpy.matmul(numpy.transpose(jacobian(current)), curr_cost)
|
||||
next = current - step_size * gradient
|
||||
next_cost = numpy.array(cost_array(next))
|
||||
|
||||
tries = step_size_tries
|
||||
current_step = step_size
|
||||
while tries > 0 and next_cost.dot(next_cost) > curr_cost.dot(curr_cost):
|
||||
current_step = current_step / 10
|
||||
next = current - current_step / 10 * gradient
|
||||
next_cost = numpy.array(cost_array(next))
|
||||
while total_cost(current - current_step * gradient) > (total_cost(current) - 0.5 * current_step * gradient.dot(gradient)):
|
||||
current_step = current_step * .8
|
||||
tries -= 1
|
||||
current = next
|
||||
if tries == 0:
|
||||
return ("hit minimum step size", iterations, current)
|
||||
current = current - current_step * gradient
|
||||
iterations += 1
|
||||
return ("Ran out of iterations", iterations, current)
|
||||
|
@ -36,9 +36,11 @@ def test_find_sols():
|
||||
x, y = pt
|
||||
return numpy.array([[-2 * x, -2 * y], [-2 * (x - 8), -2 * (y + 8)]])
|
||||
|
||||
print(costs([3, 4]))
|
||||
result = pathfinder.gradient_descent.find_sols(costs, jac, step_size=0.01, max_iterations=5000, initial=(2, 10), desired_cost=1e-6)
|
||||
print(result)
|
||||
message, iterations, result = pathfinder.gradient_descent.find_sols(costs, jac, step_size=0.01, max_iterations=5000, initial=(2, 10), desired_cost=1e-6)
|
||||
numpy.testing.assert_almost_equal(
|
||||
result, (3, 4),
|
||||
decimal=7, err_msg='the result was off', verbose=True
|
||||
)
|
||||
|
||||
|
||||
def dipole_cost(vn, xn_raw):
|
||||
@ -59,11 +61,11 @@ def test_actual_dipole_finding():
|
||||
p = pt[0:3]
|
||||
return (p.dot(p) - 35)
|
||||
|
||||
v1 = -0.0554777
|
||||
v2 = -0.0601857
|
||||
v3 = -0.0636403
|
||||
v4 = -0.0648838
|
||||
v5 = -0.0629715
|
||||
v1 = -0.05547767706400186526225414
|
||||
v2 = -0.06018573388098888319642888
|
||||
v3 = -0.06364032191901859480476888
|
||||
v4 = -0.06488383879243851188402150
|
||||
v5 = -0.06297148063759813929659130
|
||||
|
||||
# the 0 here is a red herring for index purposes later
|
||||
vns = [0, v1, v2, v3, v4, v5]
|
||||
@ -106,5 +108,8 @@ def test_actual_dipole_finding():
|
||||
jac_row(5)(pt),
|
||||
])
|
||||
|
||||
result = pathfinder.gradient_descent.find_sols(costs, jac, step_size=0.01, max_iterations=10000, initial=(1, 2, 3, 4, 5, 6), desired_cost=1e-6, step_size_tries=25)
|
||||
print(result)
|
||||
_, _, result = pathfinder.gradient_descent.find_sols(costs, jac, step_size=1, max_iterations=10000, initial=(1, 2, 3, 4, 5, 6), desired_cost=1e-6, step_size_tries=30)
|
||||
numpy.testing.assert_allclose(
|
||||
result, (1, 3, 5, 5, 6, 7),
|
||||
rtol=5e-2, err_msg='the result was off', verbose=True
|
||||
)
|
||||
|
Reference in New Issue
Block a user