Big set of changes, to bring project into more organised state

This commit is contained in:
Deepak Mallubhotla 2021-08-23 19:49:54 -05:00
parent 56e88759fe
commit e37849295a
Signed by: deepak
GPG Key ID: 64BF53A3369104E7
11 changed files with 204 additions and 181 deletions

1
.gitignore vendored
View File

@ -45,6 +45,7 @@ htmlcov/
.cache
nosetests.xml
coverage.xml
pytest.xml
*.cover
*.py,cover
.hypothesis/

73
Jenkinsfile vendored Normal file
View File

@ -0,0 +1,73 @@
pipeline {
agent {
kubernetes {
label 'pathfinder' // all your pods will be named with this prefix, followed by a unique id
idleMinutes 5 // how long the pod will live after no jobs have run on it
yamlFile 'jenkins/ci-agent-pod.yaml' // path to the pod definition relative to the root of our project
defaultContainer 'python' // define a default container if more than a few stages use it, will default to jnlp container
}
}
options {
parallelsAlwaysFailFast()
}
environment {
POETRY_HOME="/opt/poetry"
POETRY_VERSION="1.1.4"
}
stages {
stage('Build') {
steps {
echo 'Building...'
sh 'python --version'
sh 'curl -sSL https://raw.githubusercontent.com/python-poetry/poetry/master/get-poetry.py | python'
sh '${POETRY_HOME}/bin/poetry --version'
sh '${POETRY_HOME}/bin/poetry install'
}
}
stage('Test') {
parallel{
stage('pytest') {
steps {
sh '${POETRY_HOME}/bin/poetry run pytest'
}
}
stage('lint') {
steps {
sh '${POETRY_HOME}/bin/poetry run flake8'
}
}
stage('mypy') {
steps {
sh '${POETRY_HOME}/bin/poetry run mypy pathfinder'
}
}
}
}
}
post {
always {
echo 'This will always run'
junit 'pytest.xml'
cobertura coberturaReportFile: 'coverage.xml'
mail (bcc: '',
body: "Project: ${env.JOB_NAME} <br>Build Number: ${env.BUILD_NUMBER} <br> Build URL: ${env.BUILD_URL}", cc: '', charset: 'UTF-8', from: 'jenkins@jenkins.deepak.science', mimeType: 'text/html', replyTo: 'dmallubhotla+jenkins@gmail.com', subject: "${env.JOB_NAME} #${env.BUILD_NUMBER}: Build ${currentBuild.currentResult}", to: "dmallubhotla+ci@gmail.com")
}
success {
echo 'This will run only if successful'
}
failure {
echo 'This will run only if failed'
}
unstable {
echo 'This will run only if the run was marked as unstable'
}
changed {
echo 'This will run only if the state of the Pipeline has changed'
echo 'For example, if the Pipeline was previously failing but is now successful'
}
}
}

4
do.sh
View File

@ -16,6 +16,10 @@ test() {
poetry run pytest
}
htmlcov() {
poetry run pytest --cov-report=html
}
all() {
build && test
}

View File

@ -1,16 +1,4 @@
from pathfinder.model.dot import Dot
from pathfinder.model.model import DotDipoleModel
class DipoleModel():
'''
Model object represents a physical dipole finding problem.
Parameters
----------
n : int
The number of dipoles expected.
m: int
The number of dots used to sample the potential.
'''
def __init__(self, n, m):
self.n = n
serf.m = m
__all__ = ['Dot', 'DotDipoleModel', ]

37
pathfinder/model/dot.py Normal file
View File

@ -0,0 +1,37 @@
from dataclasses import dataclass
import numpy
import numpy.typing
@dataclass
class Dot():
'''
Representation of a dot measuring static dipoles.
Parameters
----------
v : float
The voltage measured at the dot.
r : numpy.ndarray
The number of dots used to sample the potential.
'''
v: float
r: numpy.typing.ArrayLike
def __post_init__(self) -> None:
self.r = numpy.array(self.r)
def v_for_point(self, pt: numpy.ndarray) -> float:
p = pt[0:3] # hardcoded here because chances
s = pt[3:6] # are we'll only ever work in 3d.
diff = self.r - s
return p.dot(diff) / (numpy.linalg.norm(diff)**3)
def cost(self, pts: numpy.ndarray) -> float:
# 6 because dipole in 3d has 6 degrees of freedom.
pt_length = 6
# creates numpy.ndarrays in groups of pt_length.
# Will throw problems for irregular points, but that's okay for now.
chunked_pts = [pts[i: i + pt_length] for i in range(0, len(pts), pt_length)]
return sum(self.v_for_point(pt) for pt in chunked_pts) - self.v

31
pathfinder/model/model.py Normal file
View File

@ -0,0 +1,31 @@
from typing import Callable, Sequence
import numpy
from pathfinder.model.dot import Dot
class DotDipoleModel():
'''
Model of n static dipoles with a collection of voltage measurements
at dots at different positions.
Parameters
----------
dots : Sequence[Dot]
A collection of dots representing a series of measured voltages.
n: int
The number of dipoles to assume.
'''
def __init__(self, dots: Sequence[Dot], n: int) -> None:
self.dots = dots
self.m = len(dots)
self.n = n
def __repr__(self) -> str:
return f'DotDipoleModel({repr(list(self.dots))}, {self.n})'
def costs(self) -> Callable[[numpy.ndarray], numpy.ndarray]:
def costs_to_return(pt: numpy.ndarray) -> numpy.ndarray:
return numpy.array([dot.cost(pt) for dot in self.dots])
return costs_to_return

14
poetry.lock generated
View File

@ -68,6 +68,14 @@ category = "dev"
optional = false
python-versions = "*"
[[package]]
name = "more-itertools"
version = "8.8.0"
description = "More routines for operating on iterables, beyond itertools"
category = "main"
optional = false
python-versions = ">=3.5"
[[package]]
name = "mypy"
version = "0.790"
@ -229,7 +237,7 @@ python-versions = "*"
[metadata]
lock-version = "1.1"
python-versions = "^3.8,<3.10"
content-hash = "bde9b5d449e7257dc8c24675658295cf82950d7ec381d873e936ad7cc4bcf6d8"
content-hash = "223211dbc0d0b43607b649f98a88b1d7c2f07c9d7574508bd8f68f36787966b3"
[metadata.files]
atomicwrites = [
@ -310,6 +318,10 @@ mccabe = [
{file = "mccabe-0.6.1-py2.py3-none-any.whl", hash = "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42"},
{file = "mccabe-0.6.1.tar.gz", hash = "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f"},
]
more-itertools = [
{file = "more-itertools-8.8.0.tar.gz", hash = "sha256:83f0308e05477c68f56ea3a888172c78ed5d5b3c282addb67508e7ba6c8f813a"},
{file = "more_itertools-8.8.0-py3-none-any.whl", hash = "sha256:2cf89ec599962f2ddc4d568a05defc40e0a587fbc10d5989713638864c36be4d"},
]
mypy = [
{file = "mypy-0.790-cp35-cp35m-macosx_10_6_x86_64.whl", hash = "sha256:bd03b3cf666bff8d710d633d1c56ab7facbdc204d567715cb3b9f85c6e94f669"},
{file = "mypy-0.790-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:2170492030f6faa537647d29945786d297e4862765f0b4ac5930ff62e300d802"},

View File

@ -8,6 +8,7 @@ authors = ["Deepak <dmallubhotla+github@gmail.com>"]
python = "^3.8,<3.10"
numpy = "^1.21.1"
scipy = "~1.5"
more-itertools = "^8.8.0"
[tool.poetry.dev-dependencies]
pytest = ">=6"
@ -21,3 +22,8 @@ build-backend = "poetry.masonry.api"
[tool.pytest.ini_options]
testpaths = ["tests"]
addopts = "--junitxml pytest.xml --cov pathfinder --cov-report=xml:coverage.xml --cov-fail-under=90"
junit_family = "xunit1"
[tool.mypy]
plugins = "numpy.typing.mypy_plugin"

25
tests/model/test_dot.py Normal file
View File

@ -0,0 +1,25 @@
import numpy
import numpy.testing
import pathfinder.model as model
def test_dot():
dot = model.Dot(0.235, (1, 2, 3))
assert dot.v == 0.235
numpy.testing.assert_array_equal(dot.r, (1, 2, 3), "These arrays should have been equal!")
def test_dot_v_from_dipole():
# for a dot located at (1, 2, 3)
dot = model.Dot(50, (1, 2, 3))
# and dipole located at (4, 7, 11) with p=(8, 9, 10)
pt = numpy.array((8, 9, 10, 4, 7, 11))
# V should be -0.153584
target = -0.1535844174880402
cost = -50.1535844174880402
numpy.testing.assert_allclose(dot.v_for_point(pt), target, err_msg="v from dipole at a dot was incorrect!")
numpy.testing.assert_allclose(dot.cost(pt), cost, err_msg="cost from dipole at a dot was incorrect!")

11
tests/model/test_model.py Normal file
View File

@ -0,0 +1,11 @@
import pathfinder.model as model
def test_dotdipolemodel_repr():
mod = model.DotDipoleModel((), 1)
assert repr(mod) == "DotDipoleModel([], 1)"
def test_dotdipolemodel_m():
mod = model.DotDipoleModel([model.Dot(1, (0, 0, 0)), model.Dot(2, (0, 0, 0))], 1)
assert mod.m == 2

View File

@ -1,165 +0,0 @@
import numpy
import scipy.optimize
import pytest
def circ_cost(radius, center=(0, 0)):
def cf(pt):
pt2 = numpy.array(pt) - numpy.array(center)
return (radius**2 - pt2.dot(pt2))
return cf
def test_circ_cost():
cost = circ_cost(5)
actual = cost([3, 4])
expected = 0
assert actual == expected
cost = circ_cost(13, [12, 5])
actual = cost([0, 0])
expected = 0
assert actual == expected
def test_find_sols():
c1 = circ_cost(5)
c2 = circ_cost(13, [8, -8])
def costs(pt):
return numpy.array(
[c1(pt), c2(pt)]
)
def jac(pt):
x, y = pt
return numpy.array([[-2 * x, -2 * y], [-2 * (x - 8), -2 * (y + 8)]])
print(scipy.optimize.minimize(lambda x: costs(x).dot(costs(x)), numpy.array([1, 2])))
#
# message, iterations, result = pathfinder.gradient_descent.find_sols(costs, jac, step_size=0.01, max_iterations=5000, initial=(2, 10), desired_cost=1e-6)
# numpy.testing.assert_almost_equal(
# result, (3, 4),
# decimal=7, err_msg='the result was off', verbose=True
# )
def dipole_cost(vn, xn_raw):
xn = numpy.array(xn_raw)
def dc(pt):
p = pt[0:3]
s = pt[3:6]
diff = xn - s
return (vn * (numpy.linalg.norm(diff)**3)) - p.dot(diff)
return dc
def test_actual_dipole_finding():
def c0(pt):
p = pt[0:3]
return (p.dot(p) - 35)
v1 = -0.05547767706400186526225414
v2 = -0.06018573388098888319642888
v3 = -0.06364032191901859480476888
v4 = -0.06488383879243851188402150
v5 = -0.06297148063759813929659130
v6 = -0.05735489606460216
v7 = -0.07237320672886623
# the 0 here is a red herring for index purposes later
vns = [0, v1, v2, v3, v4, v5]
# the 0 here is a red herring
xns = [numpy.array([0, 0, n]) for n in range(0, 6)]
# the 0 here is a red herring for index purposes later
vns2 = [0, v1, v2, v3, v4, v5, v6, v7]
# the 0 here is a red herring
xns2 = [numpy.array([0, 0, n]) for n in range(0, 7)]
xns2.append([1, 1, 7])
c1 = dipole_cost(v1, [0, 0, 1])
c2 = dipole_cost(v2, [0, 0, 2])
c3 = dipole_cost(v3, [0, 0, 3])
c4 = dipole_cost(v4, [0, 0, 4])
c5 = dipole_cost(v5, [0, 0, 5])
c6 = dipole_cost(v6, [0, 0, 6])
c6 = dipole_cost(v6, [0, 0, 6])
c7 = dipole_cost(v7, [1, 1, 7])
def costs(pt):
return numpy.array(
[c0(pt), c1(pt), c2(pt), c3(pt), c4(pt), c5(pt)]
)
def costs2(pt):
return numpy.array(
[c0(pt), c1(pt), c2(pt), c3(pt), c4(pt), c5(pt), c6(pt), c7(pt)]
)
def jac_row(n):
def jr(pt):
p = pt[0:3]
s = pt[3:6]
vn = vns2[n]
xn = xns2[n]
diff = xn - s
return [
-diff[0], -diff[1], -diff[2],
p[0] - vn * 3 * numpy.linalg.norm(diff) * (diff)[0],
p[1] - vn * 3 * numpy.linalg.norm(diff) * (diff)[1],
p[2] - vn * 3 * numpy.linalg.norm(diff) * (diff)[2]
]
return jr
def jac(pt):
return numpy.array([
[2 * pt[0], 2 * pt[1], 2 * pt[2], 0, 0, 0],
jac_row(1)(pt),
jac_row(2)(pt),
jac_row(3)(pt),
jac_row(4)(pt),
jac_row(5)(pt),
])
def jac2(pt):
return numpy.array([
[2 * pt[0], 2 * pt[1], 2 * pt[2], 0, 0, 0],
jac_row(1)(pt),
jac_row(2)(pt),
jac_row(3)(pt),
jac_row(4)(pt),
jac_row(5)(pt),
jac_row(6)(pt),
jac_row(7)(pt),
])
def print_result(msg, result):
print(msg)
print(f"\tResult: {result.x}")
print(f"\tSuccess: {result.success}. {result.message}")
try:
print(f"\tFunc evals: {result.nfev}")
except AttributeError as e:
pass
try:
print(f"\tJacb evals: {result.njev}")
except AttributeError as e:
pass
print("Minimising the squared costs")
print(scipy.optimize.minimize(lambda x: costs(x).dot(costs(x)), numpy.array([1, 2, 3, 4, 5, 6])))
# print(scipy.optimize.broyden1(costs, numpy.array([1, 2, 3, 4, 5, 6])))
# print(scipy.optimize.newton_krylov(costs, numpy.array([1, 2, 3, 4, 5, 6])))
# print(scipy.optimize.anderson(costs, numpy.array([1, 2, 3, 4, 5, 6])))
print_result("Using root", scipy.optimize.root(costs, numpy.array([1, 2, 3, 4, 5, 6])))
print_result("Using root with jacobian", scipy.optimize.root(costs, numpy.array([1, 2, 3, 4, 5, 6]), jac=jac, tol=1e-12))
print_result("Using least squares", scipy.optimize.least_squares(costs, numpy.array([1, 2, 3, 4, 5, 6]), gtol=1e-12))
print_result("Using least squares, with jacobian", scipy.optimize.least_squares(costs, numpy.array([1, 2, 3, 4, 5, 6]), jac=jac, ftol=3e-16, gtol=3e-16, xtol=3e-16))
print_result("Using least squares, with jacobian, lm", scipy.optimize.least_squares(costs, numpy.array([1, 2, 3, 4, 5, 6]), jac=jac, ftol=3e-16, gtol=3e-16, xtol=3e-16, method="lm"))
print_result("Using least squares extra dot", scipy.optimize.least_squares(costs2, numpy.array([1, 2, 3, 4, 5, 6])))
print_result("Using least squares extra dot, with jacobian", scipy.optimize.least_squares(costs2, numpy.array([1, 2, 3, 4, 5, 6]), jac=jac2, ftol=1e-12))
print(scipy.optimize.least_squares(costs2, numpy.array([1, 2, 3, 4, 5, 6]), jac=jac2, ftol=1e-12).x[0])