2 Commits

Author SHA1 Message Date
b5324f0b76 idk what's here
Some checks failed
gitea-physics/pathfinder/pipeline/head There was a failure building this commit
2021-10-29 08:23:02 -05:00
324b8ff900 Skips some annoying tests 2021-09-27 10:58:28 -05:00
12 changed files with 603 additions and 2 deletions

2
do.sh
View File

@@ -11,7 +11,7 @@ build() {
test() {
echo "I am ${FUNCNAME[0]}ing"
poetry run flake8
poetry run flake8 pathfinder tests
poetry run mypy pathfinder
poetry run pytest
}

View File

@@ -42,6 +42,15 @@ class DotMeasurement():
return (self._alpha(p, s))**2 * self._b(w)
def mod_factor_for_point(self, pt: numpy.ndarray) -> float:
'''
modification factor for cost function.
'''
s = pt[3:6] # are we'll only ever work in 3d.
diff = self.r - s
return numpy.linalg.norm(diff)**2
def _alpha(self, p: numpy.ndarray, s: numpy.ndarray) -> float:
diff = self.r - s
return p.dot(diff) / (numpy.linalg.norm(diff)**3)
@@ -57,6 +66,23 @@ class DotMeasurement():
chunked_pts = [pts[i: i + pt_length] for i in range(0, len(pts), pt_length)]
return sum(self.v_for_point(pt) for pt in chunked_pts) - self.v
def cost2(self, pts: numpy.ndarray) -> float:
# 7 because dipole in 3d has 7 degrees of freedom.
pt_length = 7
# creates numpy.ndarrays in groups of pt_length.
# Will throw problems for irregular points, but that's okay for now.
chunked_pts = [pts[i: i + pt_length] for i in range(0, len(pts), pt_length)]
mod_factor = numpy.prod([self.mod_factor_for_point(pt) for pt in chunked_pts])
return (sum(self.v_for_point(pt) for pt in chunked_pts) - self.v) * mod_factor
def simple_cost(self, pts: numpy.ndarray) -> float:
# for reduced case, a is constant
pt_length = 2
chunked_pts = [pts[i: i + pt_length] for i in range(0, len(pts), pt_length)]
return sum(pt[0] * self._b(pt[1]) for pt in chunked_pts) - self.v
def jac_pt(self, pt: numpy.ndarray) -> numpy.ndarray:
p = pt[0:3] # hardcoded here because chances
s = pt[3:6] # are we'll only ever work in 3d.
@@ -77,6 +103,39 @@ class DotMeasurement():
return numpy.concatenate((p_divs, r_divs, w_div), axis=None)
def jac_pt2(self, pt: numpy.ndarray, cost, mod_factor: float) -> numpy.ndarray:
p = pt[0:3] # hardcoded here because chances
s = pt[3:6] # are we'll only ever work in 3d.
w = pt[6]
diff = self.r - s
alpha = self._alpha(p, s)
b = self._b(w)
p_divs = (2 * alpha * diff / (numpy.linalg.norm(diff)**3) * b) * mod_factor
s_divs = ((-p / (numpy.linalg.norm(diff)**3) + 3 * p.dot(diff) * diff / (numpy.linalg.norm(diff)**5)) * 2 * alpha * b) * mod_factor
s_divs_mod = -2 * cost * mod_factor * diff / numpy.linalg.norm(diff)**2
f2 = self.f**2
w2 = w**2
w_div = (alpha**2 * (1 / numpy.pi) * ((f2 - w2) / ((f2 + w2)**2))) * mod_factor
return numpy.concatenate((p_divs, s_divs + s_divs_mod, w_div), axis=None)
def simple_jac_pt(self, pt: numpy.ndarray) -> numpy.ndarray:
a = pt[0]
w = pt[1]
f2 = self.f**2
w2 = w**2
b = self._b(w)
w_div = a * (1 / numpy.pi) * ((f2 - w2) / ((f2 + w2)**2))
return numpy.concatenate((b, w_div), axis=None)
def jac(self, pts: numpy.ndarray) -> numpy.ndarray:
# 7 because oscillating dipole in 3d has 7 degrees of freedom.
pt_length = 7
@@ -85,3 +144,20 @@ class DotMeasurement():
chunked_pts = [pts[i: i + pt_length] for i in range(0, len(pts), pt_length)]
return numpy.append([], [self.jac_pt(pt) for pt in chunked_pts])
def jac2(self, pts: numpy.ndarray) -> numpy.ndarray:
# 7 because oscillating dipole in 3d has 7 degrees of freedom.
pt_length = 7
# creates numpy.ndarrays in groups of pt_length.
# Will throw problems for irregular points, but that's okay for now.
chunked_pts = [pts[i: i + pt_length] for i in range(0, len(pts), pt_length)]
cost = self.cost(pts)
mod_factor = numpy.prod([self.mod_factor_for_point(pt) for pt in chunked_pts])
return numpy.append([], [self.jac_pt2(pt, cost, mod_factor) for pt in chunked_pts])
def simple_jac(self, pts: numpy.ndarray) -> numpy.ndarray:
pt_length = 2
chunked_pts = [pts[i: i + pt_length] for i in range(0, len(pts), pt_length)]
return numpy.append([], [self.simple_jac_pt(pt) for pt in chunked_pts])

View File

@@ -31,15 +31,53 @@ class DotOscillatingDipoleModel():
return costs_to_return
def costs2(self) -> Callable[[numpy.ndarray], numpy.ndarray]:
def costs_to_return(pt: numpy.ndarray) -> numpy.ndarray:
return numpy.array([dot.cost2(pt) for dot in self.dots])
return costs_to_return
def simple_costs(self) -> Callable[[numpy.ndarray], numpy.ndarray]:
def costs_to_return(pt: numpy.ndarray) -> numpy.ndarray:
return numpy.array([dot.simple_cost(pt) for dot in self.dots])
return costs_to_return
def jac(self) -> Callable[[numpy.ndarray], numpy.ndarray]:
def jac_to_return(pts: numpy.ndarray) -> numpy.ndarray:
return numpy.array([dot.jac(pts) for dot in self.dots])
return jac_to_return
def jac2(self) -> Callable[[numpy.ndarray], numpy.ndarray]:
def jac_to_return(pts: numpy.ndarray) -> numpy.ndarray:
return numpy.array([dot.jac2(pts) for dot in self.dots])
return jac_to_return
def simple_jac(self) -> Callable[[numpy.ndarray], numpy.ndarray]:
def jac_to_return(pts: numpy.ndarray) -> numpy.ndarray:
return numpy.array([dot.simple_jac(pts) for dot in self.dots])
return jac_to_return
def sol(self, initial_dipole=(0.1, 0.1, 0.1), initial_position=(.1, .1, .1), initial_frequency=1, use_root=True):
initial = numpy.tile(numpy.concatenate((initial_dipole, initial_position, initial_frequency), axis=None), self.n)
result = scipy.optimize.least_squares(self.costs(), initial, jac=self.jac(), ftol=1e-15, gtol=3e-16)
result.pathfinder_x = pathfinder.model.oscillating.util.normalize_oscillating_dipole_list(result.x)
return result
def sol2(self, initial_dipole=(0.1, 0.1, 0.1), initial_position=(.1, .1, .1), initial_frequency=1, use_root=True):
initial = numpy.tile(numpy.concatenate((initial_dipole, initial_position, initial_frequency), axis=None), self.n)
result = scipy.optimize.least_squares(self.costs2(), initial, jac=self.jac2(), ftol=1e-15, gtol=3e-16)
result.pathfinder_x = pathfinder.model.oscillating.util.normalize_oscillating_dipole_list(result.x)
return result
def simple_sol(self, initial_a=0.1, initial_frequency=1):
initial = numpy.tile(numpy.concatenate((initial_a, initial_frequency), axis=None), self.n)
result = scipy.optimize.least_squares(self.simple_costs(), initial, jac=self.simple_jac(), ftol=1e-15, gtol=3e-16)
result.pathfinder_x = result.x
return result

View File

@@ -16,4 +16,4 @@ def flip_chunk_to_positive_px(pt: numpy.ndarray) -> numpy.ndarray:
def normalize_oscillating_dipole_list(pts: numpy.ndarray) -> numpy.ndarray:
pt_length = 7
chunked_pts = [flip_chunk_to_positive_px(pts[i: i + pt_length]) for i in range(0, len(pts), pt_length)]
return numpy.concatenate(sorted(chunked_pts, key=lambda x: tuple(round(val, 3) for val in operator.itemgetter(0, 1, 2, 3, 4, 5, 6)(x))), axis=None)
return numpy.concatenate(sorted(chunked_pts, key=lambda x: tuple(round(val, 3) for val in operator.itemgetter(6, 0, 1, 2, 3, 4, 5)(x))), axis=None)

View File

@@ -0,0 +1,59 @@
import itertools
import logging
import multiprocessing
import numpy
import pathfinder.model.oscillating
def print_result(msg, result):
logging.info(msg)
logging.info(f"\tResult: {result.pathfinder_x}")
logging.info(f"\tSuccess: {result.success}. {result.message}")
try:
logging.info(f"\tFunc evals: {result.nfev}")
except AttributeError:
pass
try:
logging.info(f"\tJacb evals: {result.njev}")
except AttributeError:
pass
def try_initial_position(model, expected_result, initial_pos):
res = model.sol2(initial_position=initial_pos)
if res.success:
return res.pathfinder_x
else:
return None
def main():
logging.info("Running script...")
dot_inputs = list(itertools.chain.from_iterable(
(([0 + o, 0, .01], f), ([0 + o, -1, 0], f), ([-1 + o, 0, -.01], f), ([-1 + o, -1, .01], f)) for f in numpy.arange(1, 10, .05) for o in (0, 0.5)
))
dipole = pathfinder.model.oscillating.OscillatingDipole([1, 2, 3], [0, 0, -1], 7)
expected_result = numpy.array([1, 2, 3, 0, 0, -1, 7])
dipole_arrangement = pathfinder.model.oscillating.OscillatingDipoleArrangement([dipole])
dot_measurements = dipole_arrangement.get_dot_measurements(dot_inputs)
model = pathfinder.model.oscillating.DotOscillatingDipoleModel(dot_measurements, 1)
logging.info("Finished setting up model")
results = []
rb = -3
ru = 4
points_to_try = [(model, expected_result, (0.01 + dx, 0.01 + dy, 0.01 + dz)) for dx in range(rb, ru, 2) for dy in range(rb, ru, 2) for dz in range(rb, ru, 2)]
logging.info(f"Will have {len(points_to_try)} points to try")
logging.info("creating pool...")
with multiprocessing.Pool() as pool:
results = pool.starmap(try_initial_position, points_to_try)
logging.info(results)
final_values = [r for r in results if r is not None]
logging.info(final_values)
if __name__ == "__main__":
logging.basicConfig(level=logging.DEBUG)
main()

View File

@@ -0,0 +1,59 @@
import itertools
import logging
import multiprocessing
import numpy
import pathfinder.model.oscillating
def print_result(msg, result):
logging.info(msg)
logging.info(f"\tResult: {result.pathfinder_x}")
logging.info(f"\tSuccess: {result.success}. {result.message}")
try:
logging.info(f"\tFunc evals: {result.nfev}")
except AttributeError:
pass
try:
logging.info(f"\tJacb evals: {result.njev}")
except AttributeError:
pass
def try_initial_position(model, expected_result, initial_pos):
res = model.sol(initial_position=initial_pos)
if res.success:
return res.pathfinder_x
else:
return None
def main():
logging.info("Running script...")
dot_inputs = list(itertools.chain.from_iterable(
(([0 + o, 0, .01], f), ([0 + o, -1, 0], f), ([-1 + o, 0, -.01], f), ([-1 + o, -1, .01], f)) for f in numpy.arange(1, 10, .05) for o in (0, 0.5)
))
dipole = pathfinder.model.oscillating.OscillatingDipole([1, 2, 3], [0, 0, -1], 7)
expected_result = numpy.array([1, 2, 3, 0, 0, -1, 7])
dipole_arrangement = pathfinder.model.oscillating.OscillatingDipoleArrangement([dipole])
dot_measurements = dipole_arrangement.get_dot_measurements(dot_inputs)
model = pathfinder.model.oscillating.DotOscillatingDipoleModel(dot_measurements, 1)
logging.info("Finished setting up model")
results = []
rb = -4
ru = 5
points_to_try = [(model, expected_result, (0.01 + dx, 0.01 + dy, 0.01 + dz)) for dx in range(rb, ru, 2) for dy in range(rb, ru, 2) for dz in range(rb, ru, 2)]
logging.info(f"Will have {len(points_to_try)} points to try")
logging.info("creating pool...")
with multiprocessing.Pool() as pool:
results = pool.starmap(try_initial_position, points_to_try)
logging.info(results)
final_values = [r for r in results if r is not None]
logging.info(final_values)
if __name__ == "__main__":
logging.basicConfig(level=logging.DEBUG)
main()

View File

@@ -0,0 +1,66 @@
import itertools
import logging
import multiprocessing
import numpy
import pathfinder.model.oscillating
def print_result(msg, result):
logging.info(msg)
logging.info(f"\tResult: {result.pathfinder_x}")
logging.info(f"\tSuccess: {result.success}. {result.message}")
try:
logging.info(f"\tFunc evals: {result.nfev}")
except AttributeError:
pass
try:
logging.info(f"\tJacb evals: {result.njev}")
except AttributeError:
pass
def try_initial_position(model, expected_result, initial_pos):
res = model.sol(initial_position=initial_pos)
if res.success:
return res.pathfinder_x
else:
return None
def main():
logging.info("Running script...")
dot_inputs = list(itertools.chain.from_iterable(
(([0 + o, 0, .01], f), ([0 + o, -1, 0], f), ([-1 + o, 0, -.01], f), ([-1 + o, -1, .01], f)) for f in numpy.arange(1, 10, .05) for o in (0, 0.5)
))
dipole = pathfinder.model.oscillating.OscillatingDipole([1, 2, 3], [0, 0, -1], 7)
expected_result = numpy.array([1, 2, 3, 0, 0, -1, 7])
dipole_arrangement = pathfinder.model.oscillating.OscillatingDipoleArrangement([dipole])
dot_measurements = dipole_arrangement.get_dot_measurements(dot_inputs)
model = pathfinder.model.oscillating.DotOscillatingDipoleModel(dot_measurements, 1)
logging.info("Finished setting up model")
vals = [
[1.61794, 1.96704, -4.00528, -0.0784033, 0.316984, 1.0257, 7],
[8.18934, 2.86237, 15.2491, -0.695465, 1.11861, -0.306364, 7],
[0.7485, -2.17157, 35.6347, 0.353949, 0.487858, 0.0554771, 7],
[2.11867, -0.227147, -48.9911, -0.180317, 0.521937, 0.00989036, 7],
[0.0930268, 3.32614, 1.69929, 0.121074, -0.230094, -0.872652, 7],
[1, 2, 3, 0, 0, -1, 7],
[1, 2, 3, 0, 0, -1, 8],
[2, 2, 3, 0, 0, -1, 7]
]
jac = model.jac()
costs = model.costs()
for val in vals:
j = jac(numpy.array(val))
c = costs(numpy.array(val))
logging.info(f"looking at {val}")
# logging.info(f"jac: [{j}]")
# logging.info(f"cost: [{c}]")
logging.info(f"gradient: {numpy.matmul(numpy.transpose(j), c)}")
if __name__ == "__main__":
logging.basicConfig(level=logging.DEBUG)
main()

View File

@@ -0,0 +1,60 @@
import itertools
import logging
import multiprocessing
import numpy
import pathfinder.model.oscillating
def print_result(msg, result):
logging.info(msg)
logging.info(f"\tResult: {result.pathfinder_x}")
logging.info(f"\tSuccess: {result.success}. {result.message}")
try:
logging.info(f"\tFunc evals: {result.nfev}")
except AttributeError:
pass
try:
logging.info(f"\tJacb evals: {result.njev}")
except AttributeError:
pass
def try_initial_position(model, expected_result, initial_pos):
res = model.sol(initial_position=initial_pos)
# print_result(f"{initial_pos}", res)
return (initial_pos, all(numpy.isclose(res.pathfinder_x, expected_result, rtol=1e-6, atol=1e-6)))
def main():
logging.info("Running script...")
dot_inputs = list(itertools.chain.from_iterable(
(([0 + o, 0, .01], f), ([0 + o, -1, 0], f), ([-1 + o, 0, -.01], f), ([-1 + o, -1, .01], f)) for f in numpy.arange(1, 10, .05) for o in (0, 0.5)
))
dipole = pathfinder.model.oscillating.OscillatingDipole([1, 2, 3], [0, 0, -1], 7)
expected_result = numpy.array([1, 2, 3, 0, 0, -1, 7])
dipole_arrangement = pathfinder.model.oscillating.OscillatingDipoleArrangement([dipole])
dot_measurements = dipole_arrangement.get_dot_measurements(dot_inputs)
model = pathfinder.model.oscillating.DotOscillatingDipoleModel(dot_measurements, 1)
logging.info("Finished setting up model")
work_good = []
no_work_good = []
rb = -4
ru = 5
points_to_try = [(model, expected_result, (0.01 + dx, 0.01 + dy, 0.01 + dz)) for dx in range(rb, ru, 2) for dy in range(rb, ru, 2) for dz in range(rb, ru, 2)]
logging.info(f"Will have {len(points_to_try)} points to try")
logging.info("creating pool...")
with multiprocessing.Pool() as pool:
results = pool.starmap(try_initial_position, points_to_try)
work_good = [x for x,good in results if good]
no_work_good = [x for x,good in results if not good]
logging.info(f"work good: [{work_good}]")
logging.info(f"no work good: [{no_work_good}]")
if __name__ == "__main__":
logging.basicConfig(level=logging.DEBUG)
main()

View File

@@ -0,0 +1,59 @@
import itertools
import logging
import multiprocessing
import numpy
import pathfinder.model.oscillating
def print_result(msg, result):
logging.info(msg)
logging.info(f"\tResult: {result.pathfinder_x}")
logging.info(f"\tSuccess: {result.success}. {result.message}")
try:
logging.info(f"\tFunc evals: {result.nfev}")
except AttributeError:
pass
try:
logging.info(f"\tJacb evals: {result.njev}")
except AttributeError:
pass
def try_initial_position(model, expected_result, initial_pos):
res = model.sol(initial_position=initial_pos)
return (initial_pos, all(numpy.isclose(res.pathfinder_x, expected_result)))
def main():
logging.info("Running script...")
dot_inputs = list(itertools.chain.from_iterable(
(([0 + o, 0, .01], f), ([0 + o, -1, 0], f), ([-1 + o, 0, -.01], f), ([-1 + o, -1, .01], f)) for f in numpy.arange(1, 10, .1) for o in (0, 0.01)
))
dipole = pathfinder.model.oscillating.OscillatingDipole([1, 2, 3], [0, 4, -1], 7)
expected_result = numpy.array([1, 2, 3, 0, 4, -1, 7])
dipole_arrangement = pathfinder.model.oscillating.OscillatingDipoleArrangement([dipole])
dot_measurements = dipole_arrangement.get_dot_measurements(dot_inputs)
model = pathfinder.model.oscillating.DotOscillatingDipoleModel(dot_measurements, 1)
logging.info("Finished setting up model")
work_good = []
no_work_good = []
rb = -4
ru = 5
points_to_try = [(model, expected_result, (0.01 + dx, 0.01 + dy, 0.01 + dz)) for dx in range(rb, ru) for dy in range(rb, ru) for dz in range(rb, ru)]
logging.info(f"Will have {len(points_to_try)} points to try")
logging.info("creating pool...")
with multiprocessing.Pool() as pool:
results = pool.starmap(try_initial_position, points_to_try)
work_good = [x for x,good in results if good]
no_work_good = [x for x,good in results if not good]
logging.info(f"work good: [{work_good}]")
logging.info(f"no work good: [{no_work_good}]")
if __name__ == "__main__":
logging.basicConfig(level=logging.DEBUG)
main()

View File

@@ -0,0 +1,59 @@
import itertools
import logging
import multiprocessing
import numpy
import pathfinder.model.oscillating
def print_result(msg, result):
logging.info(msg)
logging.info(f"\tResult: {result.pathfinder_x}")
logging.info(f"\tSuccess: {result.success}. {result.message}")
try:
logging.info(f"\tFunc evals: {result.nfev}")
except AttributeError:
pass
try:
logging.info(f"\tJacb evals: {result.njev}")
except AttributeError:
pass
def try_initial_position(model, expected_result, initial_pos):
res = model.sol(initial_position=initial_pos)
return (initial_pos, all(numpy.isclose(res.pathfinder_x, expected_result)))
def main():
logging.info("Running script...")
dot_inputs = list(itertools.chain.from_iterable(
(([0 + o, 0, .01], f), ([0 + o, -1, 0], f), ([-1 + o, 0, -.01], f), ([-1 + o, -1, .01], f)) for f in numpy.arange(1, 10, .5) for o in (0, 0.01)
))
dipole = pathfinder.model.oscillating.OscillatingDipole([1, 2, 3], [0, 0, -1], 7)
expected_result = numpy.array([1, 2, 3, 0, 4, -1, 7])
dipole_arrangement = pathfinder.model.oscillating.OscillatingDipoleArrangement([dipole])
dot_measurements = dipole_arrangement.get_dot_measurements(dot_inputs)
model = pathfinder.model.oscillating.DotOscillatingDipoleModel(dot_measurements, 1)
logging.info("Finished setting up model")
work_good = []
no_work_good = []
rb = -2
ru = 3
points_to_try = [(model, expected_result, (0.01 + dx, 0.01 + dy, 0.01 + dz)) for dx in range(rb, ru, 2) for dy in range(rb, ru, 2) for dz in range(rb, ru, 2)]
logging.info(f"Will have {len(points_to_try)} points to try")
logging.info("creating pool...")
with multiprocessing.Pool() as pool:
results = pool.starmap(try_initial_position, points_to_try)
work_good = [x for x,good in results if good]
no_work_good = [x for x,good in results if not good]
logging.info(f"work good: [{work_good}]")
logging.info(f"no work good: [{no_work_good}]")
if __name__ == "__main__":
logging.basicConfig(level=logging.DEBUG)
main()

View File

@@ -1,5 +1,7 @@
import numpy
import pathfinder.model.oscillating
import itertools
import pytest
def chunk_n_sort(pts):
@@ -107,3 +109,83 @@ def test_two_dipole_eighteen_dot_two_frequencies_morerealistic():
print_result("two oscillating dipole six dots", res)
assert res.success, "The solution for two dipole and six dots should have succeeded."
numpy.testing.assert_allclose(res.pathfinder_x, expected_result, err_msg="Dipole wasn't as expected.", rtol=1e-6, atol=1e-6)
def test_one_dipole_four_dot_ten_frequencies():
# setup
dot_inputs = itertools.chain.from_iterable(
(([0 + o, 0, .01], f), ([0 + o, -1, 0], f), ([-1 + o, 0, -.01], f), ([-1 + o, -1, .01], f)) for f in numpy.arange(1, 10, .1) for o in (0, 0.01)
)
dipole = pathfinder.model.oscillating.OscillatingDipole([1, 2, 3], [0, 4, -1], 7)
expected_result = numpy.array([1, 2, 3, 0, 4, -1, 7])
dipole_arrangement = pathfinder.model.oscillating.OscillatingDipoleArrangement([dipole])
dot_measurements = dipole_arrangement.get_dot_measurements(dot_inputs)
model = pathfinder.model.oscillating.DotOscillatingDipoleModel(dot_measurements, 1)
res = model.sol(initial_position=(.1, .1, .1))
print_result("one oscillating dipole four dots", res)
print(model.jac()(res.x))
assert res.success, "The solution for one dipole and four dots should have succeeded."
numpy.testing.assert_allclose(res.pathfinder_x, expected_result, err_msg="Dipole wasn't as expected.", rtol=1e-6, atol=1e-6)
def test_two_dipole_four_dot_ten_frequencies():
# setup
dot_inputs = itertools.chain.from_iterable(
(([0 + o, 0, .01], f), ([0 + o, -1, 0], f), ([-1 + o, 0, -.01], f), ([-1 + o, -1, .01], f)) for f in range(1, 10) for o in (0, .5)
)
dipole = pathfinder.model.oscillating.OscillatingDipole([1, 2, 3], [0, 4, -1], 7)
dipole2 = pathfinder.model.oscillating.OscillatingDipole([-1, 2, 0], [-1, 2, 1], 4)
expected_result = numpy.array([1, -2, 0, -1, 2, 1, 4, 1, 2, 3, 0, 4, -1, 7])
dipole_arrangement = pathfinder.model.oscillating.OscillatingDipoleArrangement([dipole, dipole2])
dot_measurements = dipole_arrangement.get_dot_measurements(dot_inputs)
model = pathfinder.model.oscillating.DotOscillatingDipoleModel(dot_measurements, 2)
res = model.sol()
print_result("two oscillating dipole four dots", res)
assert res.success, "The solution for two dipole and two dots should have succeeded."
numpy.testing.assert_allclose(res.pathfinder_x, expected_result, err_msg="Dipole wasn't as expected.", rtol=1e-6, atol=1e-6)
@pytest.mark.skip(reason="Never actually works.")
def test_three_dipole_four_dot_ten_frequencies_wrongcount():
# setup
dot_inputs = itertools.chain.from_iterable(
(([0 + o, 0, .01], f), ([0 + o, -1, 0], f), ([-1 + o, 0, -.01], f), ([-1 + o, -1, .01], f)) for f in range(1, 10) for o in (0, .5)
)
dipole = pathfinder.model.oscillating.OscillatingDipole([1, 2, 3], [0, 4, -1], 7)
dipole2 = pathfinder.model.oscillating.OscillatingDipole([2, 5, 0], [1, 6, 1], 2)
dipole3 = pathfinder.model.oscillating.OscillatingDipole([-1, 2, 0], [-1, 2, 1], 4)
expected_result = numpy.array([2, 5, 0, 1, 6, 1, 2, 1, -2, 0, -1, 2, 1, 4, 1, 2, 3, 0, 4, -1, 7])
dipole_arrangement = pathfinder.model.oscillating.OscillatingDipoleArrangement([dipole, dipole2, dipole3])
dot_measurements = dipole_arrangement.get_dot_measurements(dot_inputs)
model = pathfinder.model.oscillating.DotOscillatingDipoleModel(dot_measurements, 2)
res = model.sol()
print_result("three but thinks two oscillating dipole four dots", res)
# assert res.success, "The solution for two dipole and two dots should have succeeded."
numpy.testing.assert_allclose(res.pathfinder_x, expected_result, err_msg="Dipole wasn't as expected.", rtol=1e-6, atol=1e-6)
@pytest.mark.skip(reason="Never actually works.")
def test_three_dipole_four_dot_twenty_frequencies_rightcount():
# setup
dot_inputs = itertools.chain.from_iterable(
(([0 + o, 0, .01], f), ([0 + o, -1, 0], f), ([-1 + o, 0, -.01], f), ([-1 + o, -1, .01], f)) for f in numpy.arange(0.2, 10, .2) for o in (0, .5)
)
dipole = pathfinder.model.oscillating.OscillatingDipole([1, 2, 3], [0, 4, -1], 7)
dipole2 = pathfinder.model.oscillating.OscillatingDipole([2, 5, 0], [1, 6, 1], 2)
dipole3 = pathfinder.model.oscillating.OscillatingDipole([-1, 2, 0], [-1, 2, 1], 4)
expected_result = numpy.array([2, 5, 0, 1, 6, 1, 2, 1, -2, 0, -1, 2, 1, 4, 1, 2, 3, 0, 4, -1, 7])
dipole_arrangement = pathfinder.model.oscillating.OscillatingDipoleArrangement([dipole, dipole2, dipole3])
dot_measurements = dipole_arrangement.get_dot_measurements(dot_inputs)
model = pathfinder.model.oscillating.DotOscillatingDipoleModel(dot_measurements, 3)
res = model.sol(initial_position=(.1, 3, .1))
print_result("three oscillating dipole four dots", res)
# assert res.success, "The solution for two dipole and two dots should have succeeded."
numpy.testing.assert_allclose(res.pathfinder_x, expected_result, err_msg="Dipole wasn't as expected.", rtol=1e-6, atol=1e-6)

View File

@@ -0,0 +1,43 @@
import numpy
import pathfinder.model.oscillating
def chunk_n_sort(pts):
pt_length = 7
chunked_pts = [pts[i: i + pt_length] for i in range(0, len(pts), pt_length)]
return chunked_pts
def print_result(msg, result):
print(msg)
print(f"\tResult: {result.pathfinder_x}")
print(f"\tSuccess: {result.success}. {result.message}")
try:
print(f"\tFunc evals: {result.nfev}")
except AttributeError:
pass
try:
print(f"\tJacb evals: {result.njev}")
except AttributeError:
pass
def test_simple_three_dipole_one_dot_frequencies():
# setup
dot_inputs = [
([0, 0, .01], f) for f in numpy.arange(1, 10, .5)
]
dipole = pathfinder.model.oscillating.OscillatingDipole([1, 2, 3], [0, 4, -1], 7)
dipole2 = pathfinder.model.oscillating.OscillatingDipole([2, 5, 0], [1, 6, 1], 2)
dipole3 = pathfinder.model.oscillating.OscillatingDipole([-1, 2, 0], [-1, 2, 1], 4)
dipole_arrangement = pathfinder.model.oscillating.OscillatingDipoleArrangement([dipole, dipole2, dipole3])
dot_measurements = dipole_arrangement.get_dot_measurements(dot_inputs)
model = pathfinder.model.oscillating.DotOscillatingDipoleModel(dot_measurements, 3)
res = model.simple_sol()
print_result("six oscillating dipole one dot", res)
assert res.success, "The solution for a single dipole and six dots should have succeeded."
# numpy.testing.assert_allclose(res.pathfinder_x, expected_result, err_msg="Dipole wasn't as expected.", rtol=1e-6, atol=1e-6)