Adds all the scripts
This commit is contained in:
@@ -89,35 +89,43 @@ class FixedZPlaneDiscretisation():
|
||||
----------
|
||||
model : FixedZPlaneModel
|
||||
The parent model of the discretisation.
|
||||
num_pz: int
|
||||
The number of partitions of pz.
|
||||
num_x : int
|
||||
The number of partitions of the x axis.
|
||||
num_y : int
|
||||
The number of partitions of the y axis.
|
||||
'''
|
||||
model: FixedZPlaneModel
|
||||
num_pz: int
|
||||
num_x: int
|
||||
num_y: int
|
||||
max_pz: int
|
||||
|
||||
def __post_init__(self):
|
||||
self.cell_count = self.num_x * self.num_y
|
||||
self.pz_step = (2 * self.max_pz) / self.num_pz
|
||||
self.x_step = (self.model.xmax - self.model.xmin) / self.num_x
|
||||
self.y_step = (self.model.ymax - self.model.ymin) / self.num_y
|
||||
|
||||
def bounds(self, index: Tuple[float, float]) -> Tuple[numpy.ndarray, numpy.ndarray]:
|
||||
xi, yi = index
|
||||
def bounds(self, index: Tuple[float, float, float]) -> Tuple[numpy.ndarray, numpy.ndarray]:
|
||||
pzi, xi, yi = index
|
||||
|
||||
# For this model, a point is (pz, sx, sy, w).
|
||||
# We want to keep w bounded, and restrict sx and sy based on step and pz generally.
|
||||
return (numpy.array((-self.max_pz, xi * self.x_step + self.model.xmin, yi * self.y_step + self.model.ymin, -numpy.inf)), numpy.array((self.max_pz, (xi + 1) * self.x_step + self.model.xmin, (yi + 1) * self.y_step + self.model.ymin, numpy.inf)))
|
||||
# We want to keep w bounded, and restrict pz, sx and sy based on step.
|
||||
return (
|
||||
numpy.array((pzi * self.pz_step - self.max_pz, xi * self.x_step + self.model.xmin, yi * self.y_step + self.model.ymin, -numpy.inf)),
|
||||
numpy.array(((pzi + 1) * self.pz_step - self.max_pz, (xi + 1) * self.x_step + self.model.xmin, (yi + 1) * self.y_step + self.model.ymin, numpy.inf))
|
||||
)
|
||||
|
||||
def all_indices(self) -> numpy.ndindex:
|
||||
# see https://github.com/numpy/numpy/issues/20706 for why this is a mypy problem.
|
||||
return numpy.ndindex((self.num_x, self.num_y)) # type:ignore
|
||||
return numpy.ndindex((self.num_pz, self.num_x, self.num_y)) # type:ignore
|
||||
|
||||
def solve_for_index(self, dots: Sequence[DotMeasurement], index: Tuple[float, float]) -> scipy.optimize.OptimizeResult:
|
||||
def solve_for_index(self, dots: Sequence[DotMeasurement], index: Tuple[float, float, float]) -> scipy.optimize.OptimizeResult:
|
||||
bounds = self.bounds(index)
|
||||
pz_mean = (bounds[0][0] + bounds[1][0]) / 2
|
||||
sx_mean = (bounds[0][1] + bounds[1][1]) / 2
|
||||
sy_mean = (bounds[0][2] + bounds[1][2]) / 2
|
||||
# I don't care about the typing here at the moment.
|
||||
return self.model.solve(dots, initial_pt=numpy.array((.1, sx_mean, sy_mean, .1)), bounds=bounds) # type: ignore
|
||||
return self.model.solve(dots, initial_pt=numpy.array((pz_mean, sx_mean, sy_mean, .1)), bounds=bounds) # type: ignore
|
||||
|
||||
@@ -79,6 +79,12 @@ class UnrestrictedDiscretisation():
|
||||
----------
|
||||
model : UnrestrictedModel
|
||||
The parent model of the discretisation.
|
||||
num_px: int
|
||||
The number of partitions of the px.
|
||||
num_py: int
|
||||
The number of partitions of the py.
|
||||
num_pz: int
|
||||
The number of partitions of pz.
|
||||
num_x : int
|
||||
The number of partitions of the x axis.
|
||||
num_y : int
|
||||
@@ -89,6 +95,9 @@ class UnrestrictedDiscretisation():
|
||||
The maximum p coordinate in any direction.
|
||||
'''
|
||||
model: UnrestrictedModel
|
||||
num_px: int
|
||||
num_py: int
|
||||
num_pz: int
|
||||
num_x: int
|
||||
num_y: int
|
||||
num_z: int
|
||||
@@ -99,20 +108,23 @@ class UnrestrictedDiscretisation():
|
||||
self.x_step = (self.model.xmax - self.model.xmin) / self.num_x
|
||||
self.y_step = (self.model.ymax - self.model.ymin) / self.num_y
|
||||
self.z_step = (self.model.zmax - self.model.zmin) / self.num_z
|
||||
self.px_step = 2 * self.max_p / self.num_px
|
||||
self.py_step = 2 * self.max_p / self.num_py
|
||||
self.pz_step = 2 * self.max_p / self.num_pz
|
||||
|
||||
def bounds(self, index: Tuple[float, float, float]) -> Tuple:
|
||||
xi, yi, zi = index
|
||||
def bounds(self, index: Tuple[float, float, float, float, float, float]) -> Tuple:
|
||||
pxi, pyi, pzi, xi, yi, zi = index
|
||||
|
||||
# For this model, a point is (px, py, pz, sx, sx, sy, w).
|
||||
# We want to keep w unbounded, restrict sx, sy, sz based on step and all of p generally.
|
||||
# We want to keep w unbounded, restrict sx, sy, sz, px and py based on step.
|
||||
return (
|
||||
[
|
||||
-self.max_p, -self.max_p, -self.max_p,
|
||||
pxi * self.px_step - self.max_p, pyi * self.py_step - self.max_p, pzi * self.pz_step - self.max_p,
|
||||
xi * self.x_step + self.model.xmin, yi * self.y_step + self.model.ymin, zi * self.z_step + self.model.zmin,
|
||||
-numpy.inf
|
||||
],
|
||||
[
|
||||
self.max_p, self.max_p, self.max_p,
|
||||
(pxi + 1) * self.px_step - self.max_p, (pyi + 1) * self.py_step - self.max_p, (pzi + 1) * self.pz_step - self.max_p,
|
||||
(xi + 1) * self.x_step + self.model.xmin, (yi + 1) * self.y_step + self.model.ymin, (zi + 1) * self.z_step + self.model.zmin,
|
||||
numpy.inf
|
||||
]
|
||||
@@ -120,11 +132,14 @@ class UnrestrictedDiscretisation():
|
||||
|
||||
def all_indices(self) -> numpy.ndindex:
|
||||
# see https://github.com/numpy/numpy/issues/20706 for why this is a mypy problem.
|
||||
return numpy.ndindex((self.num_x, self.num_y, self.num_z)) # type:ignore
|
||||
return numpy.ndindex((self.num_px, self.num_py, self.num_pz, self.num_x, self.num_y, self.num_z)) # type:ignore
|
||||
|
||||
def solve_for_index(self, dots: Sequence[DotMeasurement], index: Tuple[float, float, float]) -> scipy.optimize.OptimizeResult:
|
||||
def solve_for_index(self, dots: Sequence[DotMeasurement], index: Tuple[float, float, float, float, float, float]) -> scipy.optimize.OptimizeResult:
|
||||
bounds = self.bounds(index)
|
||||
px_mean = (bounds[0][0] + bounds[1][0]) / 2
|
||||
py_mean = (bounds[0][1] + bounds[1][1]) / 2
|
||||
pz_mean = (bounds[0][2] + bounds[1][2]) / 2
|
||||
sx_mean = (bounds[0][3] + bounds[1][3]) / 2
|
||||
sy_mean = (bounds[0][4] + bounds[1][4]) / 2
|
||||
sz_mean = (bounds[0][5] + bounds[1][5]) / 2
|
||||
return self.model.solve(dots, initial_pt=numpy.array([.1, .1, .1, sx_mean, sy_mean, sz_mean, .1]), bounds=bounds)
|
||||
return self.model.solve(dots, initial_pt=numpy.array([px_mean, py_mean, pz_mean, sx_mean, sy_mean, sz_mean, .1]), bounds=bounds)
|
||||
|
||||
@@ -3,14 +3,18 @@ import operator
|
||||
|
||||
|
||||
# flips px, py, pz
|
||||
SIGN_ARRAY = numpy.array((-1, -1, -1, 1, 1, 1, 1))
|
||||
|
||||
SIGN_ARRAY_7 = numpy.array((-1, -1, -1, 1, 1, 1, 1))
|
||||
SIGN_ARRAY_4 = numpy.array((-1, 1, 1, 1))
|
||||
|
||||
def flip_chunk_to_positive_px(pt: numpy.ndarray) -> numpy.ndarray:
|
||||
if pt[0] > 0:
|
||||
return pt
|
||||
else:
|
||||
return SIGN_ARRAY * pt
|
||||
# godawful hack.
|
||||
if len(pt) == 7:
|
||||
return SIGN_ARRAY_7 * pt
|
||||
elif len(pt) == 4:
|
||||
return SIGN_ARRAY_4 * pt
|
||||
|
||||
|
||||
def normalise_point_list(pts: numpy.ndarray, pt_length) -> numpy.ndarray:
|
||||
|
||||
Reference in New Issue
Block a user