Merge pull request 'feat: Adds log spaced in frequency space model' (#15) from logspaced into master
All checks were successful
gitea-physics/pdme/pipeline/head This commit looks good
All checks were successful
gitea-physics/pdme/pipeline/head This commit looks good
Reviewed-on: #15
This commit is contained in:
commit
8cbb3eaeee
@ -7,9 +7,14 @@ from pdme.model.random_count_multidipole_fixed_magnitude_model import (
|
||||
RandomCountMultipleDipoleFixedMagnitudeModel,
|
||||
)
|
||||
|
||||
from pdme.model.log_spaced_random_choice_model import (
|
||||
LogSpacedRandomCountMultipleDipoleFixedMagnitudeModel,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"DipoleModel",
|
||||
"SingleDipoleFixedMagnitudeModel",
|
||||
"MultipleDipoleFixedMagnitudeModel",
|
||||
"RandomCountMultipleDipoleFixedMagnitudeModel",
|
||||
"LogSpacedRandomCountMultipleDipoleFixedMagnitudeModel",
|
||||
]
|
||||
|
127
pdme/model/log_spaced_random_choice_model.py
Normal file
127
pdme/model/log_spaced_random_choice_model.py
Normal file
@ -0,0 +1,127 @@
|
||||
import numpy
|
||||
import numpy.random
|
||||
from pdme.model.model import DipoleModel
|
||||
from pdme.measurement import (
|
||||
OscillatingDipole,
|
||||
OscillatingDipoleArrangement,
|
||||
)
|
||||
|
||||
|
||||
class LogSpacedRandomCountMultipleDipoleFixedMagnitudeModel(DipoleModel):
|
||||
"""
|
||||
Model of multiple oscillating dipoles with a fixed magnitude, but free rotation. Spaced logarithmically.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
wexp_min: log-10 lower bound for dipole frequency
|
||||
wexp_min: log-10 upper bound for dipole frequency
|
||||
|
||||
pfixed : float
|
||||
The fixed dipole magnitude.
|
||||
|
||||
n_max : int
|
||||
The maximum number of dipoles.
|
||||
|
||||
prob_occupancy : float
|
||||
The probability of dipole occupancy
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
xmin: float,
|
||||
xmax: float,
|
||||
ymin: float,
|
||||
ymax: float,
|
||||
zmin: float,
|
||||
zmax: float,
|
||||
wexp_min: float,
|
||||
wexp_max: float,
|
||||
pfixed: float,
|
||||
n_max: int,
|
||||
prob_occupancy: float,
|
||||
) -> None:
|
||||
self.xmin = xmin
|
||||
self.xmax = xmax
|
||||
self.ymin = ymin
|
||||
self.ymax = ymax
|
||||
self.zmin = zmin
|
||||
self.zmax = zmax
|
||||
self.wexp_min = wexp_min
|
||||
self.wexp_max = wexp_max
|
||||
self.pfixed = pfixed
|
||||
self.rng = numpy.random.default_rng()
|
||||
self.n_max = n_max
|
||||
if prob_occupancy >= 1 or prob_occupancy <= 0:
|
||||
raise ValueError(
|
||||
f"The probability of a dipole site occupancy must be between 0 and 1, got {prob_occupancy}"
|
||||
)
|
||||
self.prob_occupancy = prob_occupancy
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f"LogSpacedRandomCountMultipleDipoleFixedMagnitudeModel({self.xmin}, {self.xmax}, {self.ymin}, {self.ymax}, {self.zmin}, {self.zmax}, {self.wexp_min}, {self.wexp_max}, {self.pfixed}, {self.n_max}, {self.prob_occupancy})"
|
||||
|
||||
def get_dipoles(
|
||||
self, max_frequency: float, rng_to_use: numpy.random.Generator = None
|
||||
) -> OscillatingDipoleArrangement:
|
||||
rng: numpy.random.Generator
|
||||
if rng_to_use is None:
|
||||
rng = self.rng
|
||||
else:
|
||||
rng = rng_to_use
|
||||
|
||||
dipoles = []
|
||||
|
||||
n = rng.binomial(self.n_max, self.prob_occupancy)
|
||||
|
||||
for i in range(n):
|
||||
theta = numpy.arccos(rng.uniform(-1, 1))
|
||||
phi = rng.uniform(0, 2 * numpy.pi)
|
||||
px = self.pfixed * numpy.sin(theta) * numpy.cos(phi)
|
||||
py = self.pfixed * numpy.sin(theta) * numpy.sin(phi)
|
||||
pz = self.pfixed * numpy.cos(theta)
|
||||
s_pts = numpy.array(
|
||||
(
|
||||
rng.uniform(self.xmin, self.xmax),
|
||||
rng.uniform(self.ymin, self.ymax),
|
||||
rng.uniform(self.zmin, self.zmax),
|
||||
)
|
||||
)
|
||||
frequency = 10 ** rng.uniform(self.wexp_min, self.wexp_max)
|
||||
|
||||
dipoles.append(
|
||||
OscillatingDipole(numpy.array([px, py, pz]), s_pts, frequency)
|
||||
)
|
||||
return OscillatingDipoleArrangement(dipoles)
|
||||
|
||||
def get_monte_carlo_dipole_inputs(
|
||||
self,
|
||||
monte_carlo_n: int,
|
||||
_: float,
|
||||
rng_to_use: numpy.random.Generator = None,
|
||||
) -> numpy.ndarray:
|
||||
|
||||
rng: numpy.random.Generator
|
||||
if rng_to_use is None:
|
||||
rng = self.rng
|
||||
else:
|
||||
rng = rng_to_use
|
||||
|
||||
shape = (monte_carlo_n, self.n_max)
|
||||
theta = 2 * numpy.pi * rng.random(shape)
|
||||
phi = numpy.arccos(2 * rng.random(shape) - 1)
|
||||
|
||||
p_mask = rng.binomial(1, 0.5, shape)
|
||||
p_magnitude = self.pfixed * p_mask
|
||||
|
||||
px = p_magnitude * numpy.cos(theta) * numpy.sin(phi)
|
||||
py = p_magnitude * numpy.sin(theta) * numpy.sin(phi)
|
||||
pz = p_magnitude * numpy.cos(phi)
|
||||
|
||||
sx = rng.uniform(self.xmin, self.xmax, shape)
|
||||
sy = rng.uniform(self.ymin, self.ymax, shape)
|
||||
sz = rng.uniform(self.zmin, self.zmax, shape)
|
||||
|
||||
w = 10 ** rng.uniform(self.wexp_min, self.wexp_max, shape)
|
||||
|
||||
return numpy.stack([px, py, pz, sx, sy, sz, w], axis=-1)
|
@ -0,0 +1,229 @@
|
||||
from pdme.model import LogSpacedRandomCountMultipleDipoleFixedMagnitudeModel
|
||||
import numpy
|
||||
import logging
|
||||
import pytest
|
||||
|
||||
|
||||
_logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def test_random_count_multiple_dipole_wrong_probability():
|
||||
with pytest.raises(ValueError):
|
||||
LogSpacedRandomCountMultipleDipoleFixedMagnitudeModel(
|
||||
-10, 10, -5, 5, 2, 3, 1, 2, 10, 5, 2
|
||||
)
|
||||
|
||||
|
||||
def test_repr_random_count_multiple_dipole_fixed_mag():
|
||||
model = LogSpacedRandomCountMultipleDipoleFixedMagnitudeModel(
|
||||
-10, 10, -5, 5, 2, 3, 1, 2, 10, 5, 0.5
|
||||
)
|
||||
assert (
|
||||
repr(model)
|
||||
== "LogSpacedRandomCountMultipleDipoleFixedMagnitudeModel(-10, 10, -5, 5, 2, 3, 1, 2, 10, 5, 0.5)"
|
||||
), "Repr should be what I want."
|
||||
|
||||
|
||||
def test_random_count_multiple_dipole_fixed_mag_model_get_dipoles():
|
||||
|
||||
p_fixed = 10
|
||||
|
||||
model = LogSpacedRandomCountMultipleDipoleFixedMagnitudeModel(
|
||||
-10, 10, -5, 5, 2, 3, 0, 5, p_fixed, 1, 0.5
|
||||
)
|
||||
|
||||
dipole_arrangement = model.get_dipoles(5, numpy.random.default_rng(1234))
|
||||
dipoles = dipole_arrangement.dipoles
|
||||
|
||||
assert len(dipoles) == 1, "Should have only had one dipole generated."
|
||||
expected_p = numpy.array([8.60141814, -4.50270821, -2.3960853])
|
||||
expected_s = numpy.array([-4.76615152, -1.80902942, 2.11809123])
|
||||
expected_w = 10**1.2088314662639255
|
||||
|
||||
numpy.testing.assert_allclose(
|
||||
dipoles[0].p,
|
||||
expected_p,
|
||||
err_msg="Random multiple dipole p wasn't as expected",
|
||||
)
|
||||
numpy.testing.assert_allclose(
|
||||
dipoles[0].s,
|
||||
expected_s,
|
||||
err_msg="Random multiple dipole s wasn't as expected",
|
||||
)
|
||||
numpy.testing.assert_allclose(
|
||||
dipoles[0].w, expected_w, err_msg="Random multiple dipole w wasn't as expected"
|
||||
)
|
||||
numpy.testing.assert_allclose(
|
||||
numpy.linalg.norm(dipoles[0].p),
|
||||
p_fixed,
|
||||
err_msg="Should have had the expected dipole moment magnitude.",
|
||||
)
|
||||
|
||||
|
||||
def test_random_count_multiple_dipole_fixed_mag_model_get_dipoles_multiple():
|
||||
|
||||
p_fixed = 10
|
||||
dipole_count = 5
|
||||
|
||||
model = LogSpacedRandomCountMultipleDipoleFixedMagnitudeModel(
|
||||
-10, 10, -5, 5, 2, 3, 0, 5, p_fixed, dipole_count, 0.5
|
||||
)
|
||||
|
||||
dipole_arrangement = model.get_dipoles(20, numpy.random.default_rng(1234))
|
||||
dipoles = dipole_arrangement.dipoles
|
||||
|
||||
assert (
|
||||
len(dipoles) == dipole_count
|
||||
), "Should have had multiple dipole based on count generated."
|
||||
|
||||
|
||||
def test_random_count_multiple_dipole_fixed_mag_model_get_dipoles_invariant():
|
||||
|
||||
x_min = -10
|
||||
x_max = 10
|
||||
y_min = -5
|
||||
y_max = 5
|
||||
z_min = 2
|
||||
z_max = 3
|
||||
p_fixed = 10
|
||||
max_frequency = 5
|
||||
|
||||
model = LogSpacedRandomCountMultipleDipoleFixedMagnitudeModel(
|
||||
x_min, x_max, y_min, y_max, z_min, z_max, 0, max_frequency, p_fixed, 1, 0.5
|
||||
)
|
||||
model.rng = numpy.random.default_rng(1234)
|
||||
|
||||
dipole_arrangement = model.get_dipoles(5)
|
||||
dipoles = dipole_arrangement.dipoles
|
||||
|
||||
assert len(dipoles) == 1, "Should have only had one dipole generated."
|
||||
expected_p = numpy.array([8.60141814, -4.50270821, -2.3960853])
|
||||
expected_s = numpy.array([-4.76615152, -1.80902942, 2.11809123])
|
||||
expected_w = 10**1.2088314662639255
|
||||
|
||||
numpy.testing.assert_allclose(
|
||||
dipoles[0].p,
|
||||
expected_p,
|
||||
err_msg="Random multiple dipole p wasn't as expected",
|
||||
rtol=1e-06,
|
||||
)
|
||||
numpy.testing.assert_allclose(
|
||||
dipoles[0].s, expected_s, err_msg="Random multiple dipole s wasn't as expected"
|
||||
)
|
||||
numpy.testing.assert_allclose(
|
||||
dipoles[0].w, expected_w, err_msg="Random multiple dipole w wasn't as expected"
|
||||
)
|
||||
for i in range(10):
|
||||
dipole_arrangement = model.get_dipoles(max_frequency)
|
||||
dipoles = dipole_arrangement.dipoles
|
||||
|
||||
assert len(dipoles) in (
|
||||
0,
|
||||
1,
|
||||
), "Should have either zero or one dipole generated."
|
||||
|
||||
if len(dipoles) > 0:
|
||||
min_s = numpy.array([x_min, y_min, z_min])
|
||||
max_s = numpy.array([x_max, y_max, z_max])
|
||||
|
||||
numpy.testing.assert_equal(
|
||||
numpy.logical_and(min_s < dipoles[0].s, max_s > dipoles[0].s),
|
||||
True,
|
||||
f"Dipole location [{dipoles[0].s}] should have been between min [{min_s}] and max [{max_s}] bounds.",
|
||||
)
|
||||
assert (
|
||||
dipoles[0].w < 10 ** max_frequency and dipoles[0].w > 10**0
|
||||
), "Dipole frequency should have been between 0 and max."
|
||||
|
||||
numpy.testing.assert_allclose(
|
||||
numpy.linalg.norm(dipoles[0].p),
|
||||
p_fixed,
|
||||
err_msg="Should have had the expected dipole moment magnitude.",
|
||||
)
|
||||
|
||||
|
||||
def test_random_count_multiple_dipole_fixed_mag_model_get_n_dipoles():
|
||||
|
||||
x_min = -10
|
||||
x_max = 10
|
||||
y_min = -5
|
||||
y_max = 5
|
||||
z_min = 2
|
||||
z_max = 3
|
||||
p_fixed = 10
|
||||
max_frequency = 5
|
||||
|
||||
model = LogSpacedRandomCountMultipleDipoleFixedMagnitudeModel(
|
||||
x_min, x_max, y_min, y_max, z_min, z_max, 0, max_frequency, p_fixed, 1, 0.5
|
||||
)
|
||||
model.rng = numpy.random.default_rng(1234)
|
||||
|
||||
dipole_array = model.get_monte_carlo_dipole_inputs(1, max_frequency)
|
||||
expected_dipole_array = numpy.array(
|
||||
[
|
||||
[
|
||||
[
|
||||
9.60483896,
|
||||
-1.41627817,
|
||||
-2.3960853,
|
||||
-4.76615152,
|
||||
-1.80902942,
|
||||
2.11809123,
|
||||
10**1.2088314662639255,
|
||||
]
|
||||
]
|
||||
]
|
||||
)
|
||||
|
||||
numpy.testing.assert_allclose(
|
||||
dipole_array,
|
||||
expected_dipole_array,
|
||||
err_msg="Should have had the expected output dipole array.",
|
||||
rtol=1e-6,
|
||||
)
|
||||
numpy.testing.assert_allclose(
|
||||
model.get_monte_carlo_dipole_inputs(
|
||||
1, max_frequency, numpy.random.default_rng(1234)
|
||||
),
|
||||
expected_dipole_array,
|
||||
err_msg="Should have had the expected output dipole array, even with explicitly passed rng.",
|
||||
)
|
||||
|
||||
|
||||
def test_random_count_multiple_dipole_shape():
|
||||
|
||||
x_min = -10
|
||||
x_max = 10
|
||||
y_min = -5
|
||||
y_max = 5
|
||||
z_min = 2
|
||||
z_max = 3
|
||||
p_fixed = 10
|
||||
max_frequency = 5
|
||||
num_dipoles = 13
|
||||
monte_carlo_n = 11
|
||||
|
||||
model = LogSpacedRandomCountMultipleDipoleFixedMagnitudeModel(
|
||||
x_min,
|
||||
x_max,
|
||||
y_min,
|
||||
y_max,
|
||||
z_min,
|
||||
z_max,
|
||||
0,
|
||||
max_frequency,
|
||||
p_fixed,
|
||||
num_dipoles,
|
||||
0.5,
|
||||
)
|
||||
model.rng = numpy.random.default_rng(1234)
|
||||
|
||||
actual_shape = model.get_monte_carlo_dipole_inputs(
|
||||
monte_carlo_n, max_frequency
|
||||
).shape
|
||||
|
||||
numpy.testing.assert_equal(
|
||||
actual_shape,
|
||||
(monte_carlo_n, num_dipoles, 7),
|
||||
err_msg="shape was wrong for monte carlo outputs",
|
||||
)
|
Loading…
x
Reference in New Issue
Block a user