Adds unrestricted model and adds util for normalising
Some checks failed
gitea-physics/pdme/pipeline/head There was a failure building this commit

This commit is contained in:
Deepak Mallubhotla 2022-01-02 18:32:10 -06:00
parent 5869691634
commit b8bbdf29f4
Signed by: deepak
GPG Key ID: 64BF53A3369104E7
7 changed files with 149 additions and 1 deletions

View File

@ -1,4 +1,5 @@
from pdme.model.model import Model
from pdme.model.fixed_z_plane_model import FixedZPlaneModel
from pdme.model.unrestricted_model import UnrestrictedModel
__all__ = ["Model", "FixedZPlaneModel"]
__all__ = ["Model", "FixedZPlaneModel", "UnrestrictedModel"]

View File

@ -2,6 +2,7 @@ import numpy
import scipy.optimize
from typing import Callable, Sequence
from pdme.measurement import DotMeasurement
import pdme.util
import logging
@ -83,4 +84,5 @@ class Model():
initial = numpy.tile(initial_pt, self.n())
result = scipy.optimize.least_squares(self.costs(dots), initial, jac=self.jac(dots), ftol=1e-15, gtol=3e-16, bounds=bounds)
result.normalised_x = pdme.util.normalise_point_list(result.x, self.point_length())
return result

View File

@ -0,0 +1,60 @@
import numpy
from pdme.model.model import Model
from pdme.measurement import DotMeasurement
class UnrestrictedModel(Model):
'''
Model of oscillating dipoles with no restrictions.
Additionally, each dipole is assumed to be orientated in the plus or minus z direction.
Parameters
----------
n : int
The number of dipoles to assume.
'''
def __init__(self, n: int) -> None:
self._n = n
def __repr__(self) -> str:
return f'UnrestrictedModel({self.n()})'
def point_length(self) -> int:
'''
Dipole is unconstrained in this model.
All seven degrees of freedom: (px, py, pz, sx, sy, sz, w).
'''
return 7
def n(self) -> int:
return self._n
def v_for_point_at_dot(self, dot: DotMeasurement, pt: numpy.ndarray) -> float:
p = pt[0:3]
s = pt[3:6]
w = pt[6]
diff = dot.r - s
alpha = p.dot(diff) / (numpy.linalg.norm(diff)**3)
b = (1 / numpy.pi) * (w / (w**2 + dot.f**2))
return alpha**2 * b
def jac_for_point_at_dot(self, dot: DotMeasurement, pt: numpy.ndarray) -> numpy.ndarray:
p = pt[0:3]
s = pt[3:6]
w = pt[6]
diff = dot.r - s
alpha = p.dot(diff) / (numpy.linalg.norm(diff)**3)
b = (1 / numpy.pi) * (w / (w**2 + dot.f**2))
p_divs = 2 * alpha * diff / (numpy.linalg.norm(diff)**3) * b
r_divs = (-p / (numpy.linalg.norm(diff)**3) + 3 * p.dot(diff) * diff / (numpy.linalg.norm(diff)**5)) * 2 * alpha * b
f2 = dot.f**2
w2 = w**2
w_div = alpha**2 * (1 / numpy.pi) * ((f2 - w2) / ((f2 + w2)**2))
return numpy.concatenate((p_divs, r_divs, w_div), axis=None)

3
pdme/util/__init__.py Normal file
View File

@ -0,0 +1,3 @@
from pdme.util.normal_form import normalise_point_list
__all__ = ["normalise_point_list"]

20
pdme/util/normal_form.py Normal file
View File

@ -0,0 +1,20 @@
import numpy
import operator
# flips px, py, pz
SIGN_ARRAY = numpy.array((-1, -1, -1, 1, 1, 1, 1))
def flip_chunk_to_positive_px(pt: numpy.ndarray) -> numpy.ndarray:
if pt[0] > 0:
return pt
else:
return SIGN_ARRAY * pt
def normalise_point_list(pts: numpy.ndarray, pt_length) -> numpy.ndarray:
chunked_pts = [flip_chunk_to_positive_px(pts[i: i + pt_length]) for i in range(0, len(pts), pt_length)]
range_to_length = list(range(pt_length))
rotated_range = range_to_length[pt_length - 1:] + range_to_length[0:pt_length - 1]
return numpy.concatenate(sorted(chunked_pts, key=lambda x: tuple(round(val, 3) for val in operator.itemgetter(*rotated_range)(x))), axis=None)

View File

@ -0,0 +1,24 @@
from pdme.model import UnrestrictedModel
from pdme.measurement import OscillatingDipole, OscillatingDipoleArrangement
import logging
import numpy
import itertools
def test_unrestricted_model_solve_basic():
# Initialise our dipole arrangement and create dot measurements along a square.
dipoles = OscillatingDipoleArrangement([OscillatingDipole((.2, 0, 2), (1, 2, 4), 1)])
dot_inputs = list(itertools.chain.from_iterable(
(([1, 2, 0.01], f), ([1, 1, -0.2], f), ([1.5, 2, 0.01], f), ([1.5, 1, -0.2], f), ([2, 1, 0], f), ([2, 2, 0], f), ([0, 2, -.1], f), ([0, 1, 0.04], f), ([2, 0, 0], f), ([1, 0, 0], f)) for f in numpy.arange(1, 10, 2)
))
dots = dipoles.get_dot_measurements(dot_inputs)
model = UnrestrictedModel(1)
# from the dipole, these are the unspecified variables in ((0, 0, 2), (1, 2, 4), 1)
expected_solution = [0.2, 0, 2, 1, 2, 4, 1]
result = model.solve(dots)
logging.info(result)
assert result.success
numpy.testing.assert_allclose(result.normalised_x, expected_solution, err_msg="Even well specified problem solution was wrong.", rtol=1e-6, atol=1e-11)

View File

@ -0,0 +1,38 @@
from pdme.model import UnrestrictedModel
from pdme.measurement import DotMeasurement
import logging
import numpy
def test_unrestricted_plane_model_repr():
model = UnrestrictedModel(6)
assert repr(model) == "UnrestrictedModel(6)"
def test_unrestricted_model_cost_and_jac_single():
model = UnrestrictedModel(1)
measured_v = 0.000191292 # from dipole with p=(0, 0, 2) at (1, 2, 4) with w = 1
dot = DotMeasurement(measured_v, (1, 2, 0), 5)
pt = [0, 0, 2, 2, 2, 4, 2]
cost_function = model.costs([dot])
expected_cost = [0.0000946746]
actual_cost = cost_function(pt)
numpy.testing.assert_allclose(actual_cost, expected_cost, err_msg="Cost wasn't as expected.", rtol=1e-6, atol=1e-11)
jac_function = model.jac([dot])
expected_jac = [
[
0.00007149165379592005, 0, 0.0002859666151836802,
-0.0001009293935942401, 0, -0.0002607342667851202,
0.0001035396365320221
]
]
actual_jac = jac_function(pt)
logging.warning(actual_jac)
numpy.testing.assert_allclose(actual_jac, expected_jac, err_msg="Jac wasn't as expected.", rtol=1e-6, atol=1e-11)