fix: fixes some of the shape mangling of our mcmc code
All checks were successful
gitea-physics/pdme/pipeline/head This commit looks good

This commit is contained in:
Deepak Mallubhotla 2023-07-23 22:20:14 -05:00
parent dfaf8abed5
commit e01d0e14a9
Signed by: deepak
GPG Key ID: BEBAEBF28083E022
8 changed files with 51 additions and 24 deletions

View File

@ -129,12 +129,14 @@ class LogSpacedRandomCountMultipleDipoleFixedMagnitudeFixedOrientationModel(
p_mask = rng.binomial(1, self.prob_occupancy, shape)
dipoles = numpy.einsum("ij,k->ijk", p_mask, self.moment_fixed)
# dipoles = numpy.einsum("ij,k->ijk", p_mask, self.moment_fixed)
# Is there a better way to create the final array? probably! can create a flatter guy then reshape.
# this is easier to reason about.
px = dipoles[:, :, 0]
py = dipoles[:, :, 1]
pz = dipoles[:, :, 2]
p_magnitude = self.pfixed * p_mask
px = p_magnitude * numpy.sin(self.thetafixed) * numpy.cos(self.phifixed)
py = p_magnitude * numpy.sin(self.thetafixed) * numpy.sin(self.phifixed)
pz = p_magnitude * numpy.cos(self.thetafixed)
sx = rng.uniform(self.xmin, self.xmax, shape)
sy = rng.uniform(self.ymin, self.ymax, shape)

View File

@ -72,24 +72,24 @@ class DipoleModel:
f"Starting Markov Chain Monte Carlo with seed: {seed} for chain length {chain_length} and provided stdevs {stdevs}"
)
chain: List[Tuple[float, numpy.ndarray]] = []
current = seed
if initial_cost is None:
current_cost = cost_function(current)
current_cost = cost_function(numpy.array([seed]))
else:
current_cost = initial_cost
current = seed
for i in range(chain_length):
dips = []
for dipole_index, dipole in enumerate(current):
_logger.debug(dipole_index)
_logger.debug(dipole)
stdev = stdevs[dipole_index]
tentative_dip = self.markov_chain_monte_carlo_proposal(
dipole, stdev, rng_arg
)
dips.append(tentative_dip)
dips_array = pdme.subspace_simulation.sort_array_of_dipoles_by_frequency(
dips
)
tentative_cost = cost_function(dips_array)
dips_array = pdme.subspace_simulation.sort_array_of_dipoles_by_frequency(dips)
tentative_cost = cost_function(numpy.array([dips_array]))
if tentative_cost < threshold_cost:
chain.append((tentative_cost, dips_array))
current = dips_array

View File

@ -15,6 +15,6 @@ def proportional_costs_vs_actual_measurement(
dipoles_to_test: numpy.ndarray,
) -> numpy.ndarray:
vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(
dot_inputs_array, numpy.array([dipoles_to_test])
dot_inputs_array, dipoles_to_test
)
return proportional_cost(actual_measurement_array, vals)

View File

@ -28,6 +28,8 @@ build-backend = "poetry.core.masonry.api"
testpaths = ["tests"]
addopts = "--junitxml pytest.xml --cov pdme --cov-report=xml:coverage.xml --cov-fail-under=50 --cov-report=html"
junit_family = "xunit1"
log_format = "%(asctime)s | %(levelname)s | %(pathname)s:%(lineno)d | %(message)s"
log_level = "DEBUG"
[tool.mypy]
plugins = "numpy.typing.mypy_plugin"

View File

@ -5,6 +5,9 @@ import pdme.inputs
import pdme.measurement.input_types
import pdme.subspace_simulation
import numpy
import logging
_logger = logging.getLogger(__name__)
SEED_TO_USE = 42
@ -43,9 +46,9 @@ def get_cost_function():
actual_measurements = actual_dipoles.get_dot_measurements(dot_inputs)
actual_measurements_array = numpy.array([m.v for m in actual_measurements])
def cost_to_use(sample_dipoles: numpy.ndarray) -> numpy.ndarray:
def cost_to_use(sample_dipoleses: numpy.ndarray) -> numpy.ndarray:
return pdme.subspace_simulation.proportional_costs_vs_actual_measurement(
dot_input_array, actual_measurements_array, sample_dipoles
dot_input_array, actual_measurements_array, sample_dipoleses
)
return cost_to_use
@ -77,14 +80,19 @@ def test_log_spaced_fixedxy_orientation_mcmc_basic(snapshot):
)
model.rng = numpy.random.default_rng(1234)
seed = model.get_monte_carlo_dipole_inputs(1, -1)[0]
seed = model.get_monte_carlo_dipole_inputs(1, -1)
cost_function = get_cost_function()
stdev = pdme.subspace_simulation.DipoleStandardDeviation(2, 2, 1, 0.25, 0.5, 1)
stdevs = pdme.subspace_simulation.MCMCStandardDeviation([stdev])
chain = model.get_mcmc_chain(
seed, cost_function, 10, cost_function(seed)[0], stdevs, rng_arg=numpy.random.default_rng(1515)
seed[0],
cost_function,
10,
cost_function(seed)[0],
stdevs,
rng_arg=numpy.random.default_rng(1515),
)
assert chain == snapshot

View File

@ -5,6 +5,9 @@ import pdme.inputs
import pdme.measurement.input_types
import pdme.subspace_simulation
import numpy
import logging
_logger = logging.getLogger(__name__)
SEED_TO_USE = 42
@ -43,9 +46,9 @@ def get_cost_function():
actual_measurements = actual_dipoles.get_dot_measurements(dot_inputs)
actual_measurements_array = numpy.array([m.v for m in actual_measurements])
def cost_to_use(sample_dipoles: numpy.ndarray) -> numpy.ndarray:
def cost_to_use(sample_dipoleses: numpy.ndarray) -> numpy.ndarray:
return pdme.subspace_simulation.proportional_costs_vs_actual_measurement(
dot_input_array, actual_measurements_array, sample_dipoles
dot_input_array, actual_measurements_array, sample_dipoleses
)
return cost_to_use
@ -77,14 +80,19 @@ def test_log_spaced_free_orientation_mcmc_basic(snapshot):
)
model.rng = numpy.random.default_rng(1234)
seed = model.get_monte_carlo_dipole_inputs(1, -1)[0]
seed = model.get_monte_carlo_dipole_inputs(1, -1)
cost_function = get_cost_function()
stdev = pdme.subspace_simulation.DipoleStandardDeviation(2, 2, 1, 0.25, 0.5, 1)
stdevs = pdme.subspace_simulation.MCMCStandardDeviation([stdev])
chain = model.get_mcmc_chain(
seed, cost_function, 10, cost_function(seed)[0], stdevs, rng_arg=numpy.random.default_rng(1515)
seed[0],
cost_function,
10,
cost_function(seed)[0],
stdevs,
rng_arg=numpy.random.default_rng(1515),
)
assert chain == snapshot

View File

@ -5,6 +5,9 @@ import pdme.inputs
import pdme.measurement.input_types
import pdme.subspace_simulation
import numpy
import logging
_logger = logging.getLogger(__name__)
SEED_TO_USE = 42
@ -47,9 +50,9 @@ def get_cost_function():
actual_measurements = actual_dipoles.get_dot_measurements(dot_inputs)
actual_measurements_array = numpy.array([m.v for m in actual_measurements])
def cost_to_use(sample_dipoles: numpy.ndarray) -> numpy.ndarray:
def cost_to_use(sample_dipoleses: numpy.ndarray) -> numpy.ndarray:
return pdme.subspace_simulation.proportional_costs_vs_actual_measurement(
dot_input_array, actual_measurements_array, sample_dipoles
dot_input_array, actual_measurements_array, sample_dipoleses
)
return cost_to_use
@ -85,14 +88,19 @@ def test_log_spaced_fixed_orientation_mcmc_basic(snapshot):
)
model.rng = numpy.random.default_rng(1234)
seed = model.get_monte_carlo_dipole_inputs(1, -1)[0]
seed = model.get_monte_carlo_dipole_inputs(1, -1)
cost_function = get_cost_function()
stdev = pdme.subspace_simulation.DipoleStandardDeviation(2, 2, 1, 0.25, 0.5, 1)
stdevs = pdme.subspace_simulation.MCMCStandardDeviation([stdev])
chain = model.get_mcmc_chain(
seed, cost_function, 10, cost_function(seed)[0], stdevs, rng_arg=numpy.random.default_rng(1515)
seed[0],
cost_function,
10,
cost_function(seed)[0],
stdevs,
rng_arg=numpy.random.default_rng(1515),
)
assert chain == snapshot

View File

@ -116,7 +116,6 @@ def test_random_count_multiple_dipole_fixed_mag_model_get_dipoles_invariant():
def test_random_count_multiple_dipole_fixed_or_fixed_mag_model_get_n_dipoles(snapshot):
# TODO: this test is a bit garbage just calls things without testing.
x_min = -10
x_max = 10
y_min = -5