feat: adds both electric potential and electric field x sources, makes some fast util tests use the slower explicit versions as double check

This commit is contained in:
Deepak Mallubhotla 2024-05-02 18:05:37 -05:00
parent 32a7812a43
commit e9e34162a3
Signed by: deepak
GPG Key ID: BEBAEBF28083E022
17 changed files with 579 additions and 172 deletions

View File

@ -0,0 +1,46 @@
"""
This module is a canonical source of the accurate expressions we want to use for calculating our noise.
No reference to class or anything, just a straight set of math functions.
"""
import numpy
def telegraph_beta(f: float, w: float) -> float:
"""
This function represents the frequency component of analytic telegraph noise.
We're assuming we care about the one-sided PSD where we are ignoring negative frequencies.
This matches with experimental data from say Connors et al., and I think is better than keeping with one-sided.
Note that this means that it will only be comparable then with time series data assuming one-sided!
Don't bikeshed yet, if we care about two-sided things for any reason down the line divide this by two or just change it then.
"""
return 2 * w / ((numpy.pi * f) ** 2 + w**2)
def electric_potential(p: numpy.ndarray, s: numpy.ndarray, r: numpy.ndarray) -> float:
"""
Gives the electric potential of a defect with dipole moment p, located at position s,
as measured from position r.
p, s, r, are numpy arrays of length 3
"""
diff = r - s
return (p.dot(diff) / (numpy.linalg.norm(diff) ** 3)).item()
def electric_field(
p: numpy.ndarray, s: numpy.ndarray, r: numpy.ndarray
) -> numpy.ndarray:
"""
Gives the electric field of a defect with dipole moment p, located at position s,
as measured from position r.
p, s, r, are numpy arrays of length 3
Returns an array of length 3, ideally.
"""
diff = r - s
norm_diff = numpy.linalg.norm(diff)
return ((3 * (p.dot(diff) * diff) / (norm_diff**2)) - p) / (norm_diff**3)

View File

@ -7,6 +7,7 @@ from pdme.measurement.dot_pair_measure import (
DotPairMeasurement,
DotPairRangeMeasurement,
)
import pdme.calculations
from pdme.measurement.input_types import DotInput, DotPairInput
@ -38,10 +39,27 @@ class OscillatingDipole:
self.p = numpy.array(self.p)
self.s = numpy.array(self.s)
def s_at_position(self, r: numpy.ndarray, f: float) -> float:
def _alpha_electric_potential(self, r: numpy.ndarray) -> float:
"""
Returns the electric potential of this dipole at position r.
"""
return pdme.calculations.electric_potential(self.p, self.s, r)
def _alpha_electric_field(self, r: numpy.ndarray) -> numpy.ndarray:
"""
Returns the electric field of this dipole at position r.
"""
return pdme.calculations.electric_field(self.p, self.s, r)
def _b(self, f: float) -> float:
return pdme.calculations.telegraph_beta(f, self.w)
def s_electric_potential_at_position(self, r: numpy.ndarray, f: float) -> float:
"""
Returns the noise potential at a point r, at some frequency f.
Specifically for electric potential!
Parameters
----------
r : numpy.ndarray
@ -50,17 +68,49 @@ class OscillatingDipole:
f : float
The dot frequency to sample.
"""
return (self._alpha(r)) ** 2 * self._b(f)
return (self._alpha_electric_potential(r)) ** 2 * self._b(f)
def _alpha(self, r: numpy.ndarray) -> float:
diff = r - self.s
return self.p.dot(diff) / (numpy.linalg.norm(diff) ** 3)
def s_electric_potential_for_dot_pair(
self, r1: numpy.ndarray, r2: numpy.ndarray, f: float
) -> float:
"""
This is specifically the analytic cpsd for electric potential noise.
This should be deprecated
"""
return (
self._alpha_electric_potential(r1)
* self._alpha_electric_potential(r2)
* self._b(f)
)
def _b(self, f: float) -> float:
return (1 / numpy.pi) * (self.w / (f**2 + self.w**2))
def s_electric_fieldx_at_position(self, r: numpy.ndarray, f: float) -> float:
"""
Returns the noise potential at a point r, at some frequency f.
def s_for_dot_pair(self, r1: numpy.ndarray, r2: numpy.ndarray, f: float) -> float:
return self._alpha(r1) * self._alpha(r2) * self._b(f)
Specifically for electric potential!
Parameters
----------
r : numpy.ndarray
The position of the dot.
f : float
The dot frequency to sample.
"""
return (self._alpha_electric_field(r)[0]) ** 2 * self._b(f)
def s_electric_fieldx_for_dot_pair(
self, r1: numpy.ndarray, r2: numpy.ndarray, f: float
) -> float:
"""
This is specifically the analytic cpsd for electric potential noise.
This should be deprecated
"""
return (
self._alpha_electric_field(r1)[0]
* self._alpha_electric_field(r2)[0]
* self._b(f)
)
def to_flat_array(self) -> numpy.ndarray:
return numpy.concatenate([self.p, self.s, numpy.array([self.w])])
@ -78,69 +128,97 @@ class OscillatingDipoleArrangement:
def __init__(self, dipoles: Sequence[OscillatingDipole]):
self.dipoles = dipoles
def get_dot_measurement(self, dot_input: DotInput) -> DotMeasurement:
def get_potential_dot_measurement(self, dot_input: DotInput) -> DotMeasurement:
r = numpy.array(dot_input[0])
f = dot_input[1]
return DotMeasurement(
sum([dipole.s_at_position(r, f) for dipole in self.dipoles]), r, f
sum(
[
dipole.s_electric_potential_at_position(r, f)
for dipole in self.dipoles
]
),
r,
f,
)
def get_dot_pair_measurement(
def get_potential_dot_pair_measurement(
self, dot_pair_input: DotPairInput
) -> DotPairMeasurement:
r1 = numpy.array(dot_pair_input[0])
r2 = numpy.array(dot_pair_input[1])
f = dot_pair_input[2]
return DotPairMeasurement(
sum([dipole.s_for_dot_pair(r1, r2, f) for dipole in self.dipoles]),
sum(
[
dipole.s_electric_potential_for_dot_pair(r1, r2, f)
for dipole in self.dipoles
]
),
r1,
r2,
f,
)
def get_dot_measurements(
def get_potential_dot_measurements(
self, dot_inputs: Sequence[DotInput]
) -> List[DotMeasurement]:
"""
For a series of points, each with three coordinates and a frequency, return a list of the corresponding DotMeasurements.
"""
return [self.get_dot_measurement(dot_input) for dot_input in dot_inputs]
return [
self.get_potential_dot_measurement(dot_input) for dot_input in dot_inputs
]
def get_dot_pair_measurements(
def get_potential_dot_pair_measurements(
self, dot_pair_inputs: Sequence[DotPairInput]
) -> List[DotPairMeasurement]:
"""
For a series of pairs of points, each with three coordinates and a frequency, return a list of the corresponding DotPairMeasurements.
"""
return [
self.get_dot_pair_measurement(dot_pair_input)
self.get_potential_dot_pair_measurement(dot_pair_input)
for dot_pair_input in dot_pair_inputs
]
def get_percent_range_dot_measurement(
def get_percent_range_potential_dot_measurement(
self, dot_input: DotInput, low_percent: float, high_percent: float
) -> DotRangeMeasurement:
r = numpy.array(dot_input[0])
f = dot_input[1]
return DotRangeMeasurement(
low_percent * sum([dipole.s_at_position(r, f) for dipole in self.dipoles]),
high_percent * sum([dipole.s_at_position(r, f) for dipole in self.dipoles]),
low_percent
* sum(
[
dipole.s_electric_potential_at_position(r, f)
for dipole in self.dipoles
]
),
high_percent
* sum(
[
dipole.s_electric_potential_at_position(r, f)
for dipole in self.dipoles
]
),
r,
f,
)
def get_percent_range_dot_measurements(
def get_percent_range_potential_dot_measurements(
self, dot_inputs: Sequence[DotInput], low_percent: float, high_percent: float
) -> List[DotRangeMeasurement]:
"""
For a series of pairs of points, each with three coordinates and a frequency, and also a lower error range and upper error range, return a list of the corresponding DotPairRangeMeasurements.
"""
return [
self.get_percent_range_dot_measurement(dot_input, low_percent, high_percent)
self.get_percent_range_potential_dot_measurement(
dot_input, low_percent, high_percent
)
for dot_input in dot_inputs
]
def get_percent_range_dot_pair_measurement(
def get_percent_range_potential_dot_pair_measurement(
self, pair_input: DotPairInput, low_percent: float, high_percent: float
) -> DotPairRangeMeasurement:
r1 = numpy.array(pair_input[0])
@ -148,15 +226,25 @@ class OscillatingDipoleArrangement:
f = pair_input[2]
return DotPairRangeMeasurement(
low_percent
* sum([dipole.s_for_dot_pair(r1, r2, f) for dipole in self.dipoles]),
* sum(
[
dipole.s_electric_potential_for_dot_pair(r1, r2, f)
for dipole in self.dipoles
]
),
high_percent
* sum([dipole.s_for_dot_pair(r1, r2, f) for dipole in self.dipoles]),
* sum(
[
dipole.s_electric_potential_for_dot_pair(r1, r2, f)
for dipole in self.dipoles
]
),
r1,
r2,
f,
)
def get_percent_range_dot_pair_measurements(
def get_percent_range_potential_dot_pair_measurements(
self,
pair_inputs: Sequence[DotPairInput],
low_percent: float,
@ -166,7 +254,7 @@ class OscillatingDipoleArrangement:
For a series of pairs of points, each with three coordinates and a frequency, and also a lower error range and upper error range, return a list of the corresponding DotPairRangeMeasurements.
"""
return [
self.get_percent_range_dot_pair_measurement(
self.get_percent_range_potential_dot_pair_measurement(
pair_input, low_percent, high_percent
)
for pair_input in pair_inputs

View File

@ -45,7 +45,7 @@ def fast_s_nonlocal(
_logger.debug(f"alphses1: {alphses1}")
_logger.debug(f"alphses2: {alphses2}")
bses = (1 / numpy.pi) * (ws[:, None] / (f1s**2 + ws[:, None] ** 2))
bses = 2 * ws[:, None] / ((numpy.pi * f1s) ** 2 + ws[:, None] ** 2)
if _logger.isEnabledFor(logging.DEBUG):
_logger.debug(f"bses: {bses}")
@ -58,44 +58,78 @@ def fast_s_nonlocal_dipoleses(
"""
No error correction here baby.
"""
# We're going to annotate the indices on this class.
# Let's define some indices:
# A -> index of dipoleses configurations
# measurement_index -> if we have 100 frequencies for example, indexes which one of them it is
# j -> within a particular configuration, indexes dipole j
# If we need to use numbers, let's use A -> 2, j -> 10, measurement_index -> 9 for consistency with
# my other notes
# cart -> {x, y, z} is a cartesian axis
# ps, ss have shape [A, j, cart]
ps = dipoleses[:, :, 0:3]
ss = dipoleses[:, :, 3:6]
# ws shape [A, j]
ws = dipoleses[:, :, 6]
_logger.debug(f"ps: {ps}")
_logger.debug(f"ss: {ss}")
_logger.debug(f"ws: {ws}")
# rs have shape [meas_idx, {}, cart], where the inner index goes away leaving
# [meas, cart]
r1s = dot_pair_inputs[:, 0, 0:3]
r2s = dot_pair_inputs[:, 1, 0:3]
# fs have index [meas_idx], this makes sense
f1s = dot_pair_inputs[:, 0, 3]
f2s = dot_pair_inputs[:, 1, 3]
if (f1s != f2s).all():
raise ValueError(f"Dot pair frequencies are inconsistent: {dot_pair_inputs}")
# r1s have shape [meas, cart], adding the none makes it
# r1s[:, None].shape = [meas, 1, cart]
# ss[:, None, :].shape = [A, 1, j, cart]
# subtracting broadcasts by matching from the right to the left, giving a final shape of
# diffses.shape [A, meas, j, cart]
diffses1 = r1s[:, None] - ss[:, None, :]
diffses2 = r2s[:, None] - ss[:, None, :]
if _logger.isEnabledFor(logging.DEBUG):
_logger.debug(f"diffses1: {diffses1}")
_logger.debug(f"diffses2: {diffses2}")
# norming on the cartesian axis, which is axis 3 as seen above
# norms.shape [A, meas, j]
norms1 = numpy.linalg.norm(diffses1, axis=3) ** 3
norms2 = numpy.linalg.norm(diffses2, axis=3) ** 3
if _logger.isEnabledFor(logging.DEBUG):
_logger.debug(f"norms1: {norms1}")
_logger.debug(f"norms2: {norms2}")
# diffses shape [A, meas, j, cart]
# ps shape [A, j, cart]
# so we're summing over the d axis, the cartesian one.
# final shape of numerator is [A, meas, j]
# denom shape is [A, meas, j]
# final shape stayes [A, meas, j]
alphses1 = numpy.einsum("abcd,acd->abc", diffses1, ps) / norms1
alphses2 = numpy.einsum("abcd,acd->abc", diffses2, ps) / norms2
if _logger.isEnabledFor(logging.DEBUG):
_logger.debug(f"alphses1: {alphses1}")
_logger.debug(f"alphses2: {alphses2}")
bses = (1 / numpy.pi) * (ws[:, None, :] / (f1s[:, None] ** 2 + ws[:, None, :] ** 2))
# ws shape [A, j], so numerator has shape [A, 1, j]
# f1s shape is [meas], so first term of denom is [meas, 1]
# ws[:, None, :].shape [A, 1, j] so breadcasting the sum in denom gives
# denom.shape [A meas, j]
# so now overall shape is [A, meas, j]
bses = 2 * ws[:, None, :] / ((numpy.pi * f1s[:, None]) ** 2 + ws[:, None, :] ** 2)
if _logger.isEnabledFor(logging.DEBUG):
_logger.debug(f"bses: {bses}")
# so our output shape is [A, meas, j]
_logger.debug(f"Raw pair calc: [{alphses1 * alphses2 * bses}]")
return numpy.einsum("...j->...", alphses1 * alphses2 * bses)
@ -218,7 +252,7 @@ def fast_s_spin_qubit_tarucha_nonlocal_dipoleses(
_logger.debug(f"alphses1: {alphses1}")
_logger.debug(f"alphses2: {alphses2}")
bses = (1 / numpy.pi) * (ws[:, None, :] / (f1s[:, None] ** 2 + ws[:, None, :] ** 2))
bses = 2 * ws[:, None, :] / ((numpy.pi * f1s[:, None]) ** 2 + ws[:, None, :] ** 2)
if _logger.isEnabledFor(logging.DEBUG):
_logger.debug(f"bses: {bses}")

View File

@ -31,7 +31,8 @@ def fast_vs_for_dipoles(
ases = (numpy.einsum("...ji, ...i", diffses, ps) / norms) ** 2
_logger.debug(f"ases: {ases}")
bses = (1 / numpy.pi) * (ws[:, None] / (fs**2 + ws[:, None] ** 2))
bses = 2 * ws[:, None] / ((numpy.pi * fs) ** 2 + ws[:, None] ** 2)
_logger.debug(f"bses: {bses}")
return ases * bses
@ -64,7 +65,7 @@ def fast_vs_for_dipoleses(
ases = (numpy.einsum("abcd,acd->abc", diffses, ps) / norms) ** 2
_logger.debug(f"ases: {ases}")
bses = (1 / numpy.pi) * (ws[:, None, :] / (fs[:, None] ** 2 + ws[:, None, :] ** 2))
bses = 2 * ws[:, None, :] / ((numpy.pi * fs[:, None]) ** 2 + ws[:, None, :] ** 2)
_logger.debug(f"bses: {bses}")
return numpy.einsum("...j->...", ases * bses)
@ -92,6 +93,9 @@ def fast_vs_for_asymmetric_dipoleses(
diffses = rs[:, None] - ss[:, None, :]
_logger.warning(
"This method is very likely to be broken, and should not be used without more thought"
)
w1s = numpy.exp(-e1s / temp) * raw_ws
w2s = numpy.exp(-e2s / temp) * raw_ws
@ -105,7 +109,7 @@ def fast_vs_for_asymmetric_dipoleses(
ases = (numpy.einsum("abcd,acd->abc", diffses, ps) / norms) ** 2
bses = (1 / numpy.pi) * (ws[:, None, :] / (fs[:, None] ** 2 + ws[:, None, :] ** 2))
bses = ws[:, None, :] / ((numpy.pi * fs[:, None]) ** 2 + ws[:, None, :] ** 2)
return numpy.einsum("...j->...", ases * bses)

View File

@ -0,0 +1,81 @@
# serializer version: 1
# name: test_multiple_electric_field_alphas
list([
list([
0.009579434215333742,
0.007714411624737791,
0.0035604976729559034,
]),
list([
0.005036717012002481,
0.006259221141129298,
-0.009682232702684382,
]),
list([
0.01503516326014651,
0.012028130608117207,
0.009021097956087907,
]),
list([
0.0033871215792458027,
0.0038182097802407235,
-0.005604146612933966,
]),
list([
0.007409666906433089,
0.006778734778841714,
0.003467602973242188,
]),
list([
0.004730939083250055,
0.0046546336141653774,
-0.011766303332857395,
]),
list([
-0.010766266772985707,
-0.012631289363581657,
-0.010851040527103707,
]),
list([
-0.008410828408392494,
-0.020391368873835285,
0.009877833363344673,
]),
list([
-0.015035163260146511,
-0.018042195912175815,
-0.021049228564205113,
]),
list([
-0.005850482727788205,
-0.012193637685284892,
0.0054809785555068454,
]),
list([
-0.007682229585552562,
-0.010584517372472879,
-0.009352937859414517,
]),
list([
-0.009767100042838822,
-0.020831393060117175,
0.014024945217763873,
]),
])
# ---
# name: test_multiple_electric_potential_alphas
list([
0.05035560994609065,
-0.03369221379873504,
0.07216878364870323,
-0.024633611485424027,
0.04496779459769236,
-0.03108684810509794,
-0.08019597139562586,
0.08293468011996319,
-0.10825317547305485,
0.060044427995721066,
-0.06935710692186449,
0.08733923991432278,
])
# ---

View File

@ -0,0 +1,102 @@
import pdme.calculations
import pytest
import numpy
import numpy.testing
# generated in mathematica to compare here
beta_test_data = [
[-2, -2, 0.8072976151],
[-1, -2, 0.008105366193],
[0, -2, 0.00008105691406],
[1, -2, 8.105694659e-7],
[2, -2, 8.105694691e-9],
[-2, -1, 5.768008783],
[-1, -1, 0.08072976151],
[0, -1, 0.0008105366193],
[1, -1, 8.105691406e-6],
[2, -1, 8.105694659e-8],
[-2, 0, 1.951840272],
[-1, 0, 0.5768008783],
[0, 0, 0.008072976151],
[1, 0, 0.00008105366193],
[2, 0, 8.105691406e-7],
[-2, 1, 0.1999506642],
[-1, 1, 0.1951840272],
[0, 1, 0.05768008783],
[1, 1, 0.0008072976151],
[2, 1, 8.105366193e-6],
[-2, 2, 0.01999995065],
[-1, 2, 0.01999506642],
[0, 2, 0.01951840272],
[1, 2, 0.005768008783],
[2, 2, 0.00008072976151],
]
@pytest.mark.parametrize("f, w, expected", beta_test_data)
def test_calculations_beta_func(f, w, expected):
# there's nothing special about the 5 * 10^ f and 10^w passing in logs
# this was just to get a variety of orders of magnitude in results.
actual = pdme.calculations.telegraph_beta(5 * 10**f, 10**w)
numpy.testing.assert_allclose(actual, expected, atol=0, rtol=1e-8)
def test_multiple_electric_potential_alphas(snapshot):
"""
Manually compare these with mathematica stuff because manually including a list is a bit annoying.
Basically just visually compare the snapshot values to make sure they're actually correct.
"""
dipole_ps = [
numpy.array([1, 2, 3]),
numpy.array([-4, -3, -2]),
]
dipole_ss = [
numpy.array([0, 0, 1]),
numpy.array([1, 1, 1]),
numpy.array([0, -0.5, 0.5]),
]
test_rs = [
numpy.array([5, 5, 5]),
numpy.array([-4, -6, 2]),
]
actuals = [
pdme.calculations.electric_potential(p, s, r)
for p in dipole_ps
for s in dipole_ss
for r in test_rs
]
assert actuals == snapshot
def test_multiple_electric_field_alphas(snapshot):
"""
Manually compare these with mathematica stuff because manually including a list is a bit annoying.
Basically just visually compare the snapshot values to make sure they're actually correct.
"""
dipole_ps = [
numpy.array([1, 2, 3]),
numpy.array([-4, -3, -2]),
]
dipole_ss = [
numpy.array([0, 0, 1]),
numpy.array([1, 1, 1]),
numpy.array([0, -0.5, 0.5]),
]
test_rs = [
numpy.array([5, 5, 5]),
numpy.array([-4, -6, 2]),
]
actuals = [
pdme.calculations.electric_field(p, s, r).tolist()
for p in dipole_ps
for s in dipole_ss
for r in test_rs
]
assert actuals == snapshot

View File

@ -2,23 +2,30 @@ import numpy
import pdme.measurement
def test_static_dipole():
d1 = pdme.measurement.OscillatingDipole((1, 2, 3), (4, 5, 6), 7)
d2 = pdme.measurement.OscillatingDipole((2, 5, 3), (4, -5, -6), 2)
def test_static_dipole_electric_potential():
d1 = pdme.measurement.OscillatingDipole(
numpy.array((1, 2, 3)), numpy.array([4, 5, 6]), 7
)
d2 = pdme.measurement.OscillatingDipole(
numpy.array([2, 5, 3]), numpy.array([4, -5, -6]), 2
)
dipoles = pdme.measurement.OscillatingDipoleArrangement([d1, d2])
dot_position1 = (-1, -1, -1)
dot_position1 = numpy.array([-1, -1, -1])
dot_frequency1 = 11
expected_v1 = 0.00001421963287022476
expected_v2 = 0.00001107180225755457
expected_v1 = 0.00001221710876727626
expected_v2 = 7.257229625870065e-6
numpy.testing.assert_allclose(
d1.s_at_position(dot_position1, dot_frequency1),
d1.s_electric_potential_at_position(dot_position1, dot_frequency1),
expected_v1,
err_msg="Voltage at dot isn't as expected.",
)
dot_measurements = dipoles.get_dot_measurements([(dot_position1, dot_frequency1)])
dot_measurements = dipoles.get_potential_dot_measurements(
[(dot_position1, dot_frequency1)]
)
assert len(dot_measurements) == 1, "Should have only had one dot measurement."
measurement = dot_measurements[0]
numpy.testing.assert_allclose(
@ -38,24 +45,57 @@ def test_static_dipole():
)
def test_dipole_dot_pair():
d1 = pdme.measurement.OscillatingDipole((1, 2, 3), (4, 5, 6), 7)
dipoles = pdme.measurement.OscillatingDipoleArrangement([d1])
def test_static_dipole_electric_field_x():
d1 = pdme.measurement.OscillatingDipole(
numpy.array((1, 2, 3)), numpy.array([4, 5, 6]), 7
)
d2 = pdme.measurement.OscillatingDipole(
numpy.array([2, 5, 3]), numpy.array([4, -5, -6]), 2
)
# dipoles = pdme.measurement.OscillatingDipoleArrangement([d1, d2])
dot_position1 = (-1, -1, -1)
dot_position2 = (1, 2, 3)
dot_frequency = 8
expected_sij = 0.000083328037100902801698
dot_position1 = numpy.array([-1, -1, -1])
dot_frequency1 = 11
# these should be true for electric field
expected_v1 = 1.479556451978925e-7
expected_v2 = 6.852024308908262e-7
numpy.testing.assert_allclose(
d1.s_for_dot_pair(dot_position1, dot_position2, dot_frequency),
d1.s_electric_fieldx_at_position(dot_position1, dot_frequency1),
expected_v1,
err_msg="Fieldx noise at dot isn't as expected.",
)
numpy.testing.assert_allclose(
d2.s_electric_fieldx_at_position(dot_position1, dot_frequency1),
expected_v2,
err_msg="Fieldx at dot isn't as expected.",
)
def test_dipole_dot_pair():
d1 = pdme.measurement.OscillatingDipole(
numpy.array([1, 2, 3]), numpy.array([4, 5, 6]), 7
)
dipoles = pdme.measurement.OscillatingDipoleArrangement([d1])
dot_position1 = numpy.array([-1, -1, -1])
dot_position2 = numpy.array([1, 2, 3])
dot_frequency = 8
expected_sij = 0.00008692058236162933
numpy.testing.assert_allclose(
d1.s_electric_potential_for_dot_pair(
dot_position1, dot_position2, dot_frequency
),
expected_sij,
err_msg="Sij for dot pair isn't as expected.",
)
numpy.testing.assert_allclose(
[
m.v
for m in dipoles.get_dot_pair_measurements(
for m in dipoles.get_potential_dot_pair_measurements(
[(dot_position1, dot_position2, dot_frequency)]
)
],
@ -65,15 +105,17 @@ def test_dipole_dot_pair():
def test_range_pairs():
d1 = pdme.measurement.OscillatingDipole((1, 2, 3), (4, 5, 6), 7)
d1 = pdme.measurement.OscillatingDipole(
numpy.array([1, 2, 3]), numpy.array([4, 5, 6]), 7
)
dipoles = pdme.measurement.OscillatingDipoleArrangement([d1])
dot_position1 = (-1, -1, -1)
dot_position2 = (1, 2, 3)
dot_position1 = numpy.array([-1, -1, -1])
dot_position2 = numpy.array([1, 2, 3])
dot_frequency = 8
expected_sij = 0.000083328037100902801698
expected_sij = 0.00008692058236162933
actuals = dipoles.get_percent_range_dot_pair_measurements(
actuals = dipoles.get_percent_range_potential_dot_pair_measurements(
[(dot_position1, dot_position2, dot_frequency)], 0.5, 1.5
)
assert len(actuals) == 1, "should have only been one pair"
@ -86,22 +128,26 @@ def test_range_pairs():
def test_range_dipole_measurements():
d1 = pdme.measurement.OscillatingDipole((1, 2, 3), (4, 5, 6), 7)
d2 = pdme.measurement.OscillatingDipole((2, 5, 3), (4, -5, -6), 2)
d1 = pdme.measurement.OscillatingDipole(
numpy.array([1, 2, 3]), numpy.array([4, 5, 6]), 7
)
d2 = pdme.measurement.OscillatingDipole(
numpy.array([2, 5, 3]), numpy.array([4, -5, -6]), 2
)
dipoles = pdme.measurement.OscillatingDipoleArrangement([d1, d2])
dot_position1 = (-1, -1, -1)
dot_position1 = numpy.array([-1, -1, -1])
dot_frequency1 = 11
expected_v1 = 0.00001421963287022476
expected_v2 = 0.00001107180225755457
expected_v1 = 0.00001221710876727626
expected_v2 = 7.257229625870065e-6
numpy.testing.assert_allclose(
d1.s_at_position(dot_position1, dot_frequency1),
d1.s_electric_potential_at_position(dot_position1, dot_frequency1),
expected_v1,
err_msg="Voltage at dot isn't as expected.",
)
range_dot_measurements = dipoles.get_percent_range_dot_measurements(
range_dot_measurements = dipoles.get_percent_range_potential_dot_measurements(
[(dot_position1, dot_frequency1)], 0.5, 1.5
)
assert len(range_dot_measurements) == 1, "Should have only had one dot measurement."

View File

@ -2,52 +2,52 @@
# name: test_log_spaced_fixedxy_orientation_mcmc_basic
list([
tuple(
3984.461796565,
3984.4199552664,
array([[ 9.55610128, 2.94634152, 0. , 9.21529051, -2.46576127,
2.42481096, 9.19034554]]),
),
tuple(
8583.9908787152,
8583.8032728084,
array([[ 9.99991539, 0.04113671, 0. , 8.71258954, -2.26599865,
2.60452102, 6.37042214]]),
),
tuple(
6215.6376616016,
6215.5671525452,
array([[ 9.81950685, -1.89137124, 0. , 8.90637055, -2.48043039,
2.28444435, 8.84239221]]),
),
tuple(
424.7332846598,
424.7282747232,
array([[ 1.00028483, 9.94984574, 0. , 8.53064898, -2.59230757,
2.33774773, 8.6714416 ]]),
),
tuple(
300.9220380849,
300.920463669,
array([[ 1.4003442 , 9.90146636, 0. , 8.05557992, -2.6753126 ,
2.65915755, 13.02021385]]),
),
tuple(
2400.0107277085,
2400.0053792245,
array([[ 9.97761813, 0.66868263, 0. , 8.69171028, -2.73145011,
2.90140456, 19.94999593]]),
),
tuple(
5001.4620511303,
5001.4154377966,
array([[ 9.93976109, -1.09596962, 0. , 8.95245025, -2.59409162,
2.90140456, 9.75535945]]),
),
tuple(
195.2198074488,
195.2191433934,
array([[ 0.20690762, 9.99785923, 0. , 9.59636585, -2.83240984,
2.90140456, 16.14771567]]),
),
tuple(
2698.258844498,
2698.2459654601,
array([[-9.68130127, -2.50447712, 0. , 8.94823619, -2.92889659,
2.77065328, 13.63173263]]),
),
tuple(
1193.6985473944,
1193.6653292625,
array([[-6.16597091, -7.87278875, 0. , 9.62210721, -2.75993924,
2.77065328, 5.64553534]]),
),

View File

@ -2,52 +2,52 @@
# name: test_log_spaced_free_orientation_mcmc_basic
list([
tuple(
3167.6711268743,
3167.6603875494,
array([[ 9.60483896, -1.41627817, -2.3960853 , -4.76615152, -1.80902942,
2.11809123, 16.17452242]]),
),
tuple(
3167.6711268743,
3167.6603875494,
array([[ 9.60483896, -1.41627817, -2.3960853 , -4.76615152, -1.80902942,
2.11809123, 16.17452242]]),
),
tuple(
3167.6711268743,
3167.6603875494,
array([[ 9.60483896, -1.41627817, -2.3960853 , -4.76615152, -1.80902942,
2.11809123, 16.17452242]]),
),
tuple(
736.0306527136,
2320.6090682509,
array([[ 4.1660069 , -8.11557337, 4.0965663 , -4.35968351, -1.97945216,
2.43615641, 12.92143144]]),
),
tuple(
736.0306527136,
2320.6090682509,
array([[ 4.1660069 , -8.11557337, 4.0965663 , -4.35968351, -1.97945216,
2.43615641, 12.92143144]]),
),
tuple(
736.0306527136,
2320.6090682509,
array([[ 4.1660069 , -8.11557337, 4.0965663 , -4.35968351, -1.97945216,
2.43615641, 12.92143144]]),
),
tuple(
2248.0779986277,
2248.0760851141,
array([[-1.71755535, -5.59925137, 8.10545419, -4.03306318, -1.81098441,
2.77407111, 32.28020575]]),
),
tuple(
1663.310672736,
1663.3101472167,
array([[-5.16785855, 2.7558756 , 8.10545419, -3.34620897, -1.74763642,
2.42770463, 52.98214008]]),
),
tuple(
1329.2704143918,
1329.2703365134,
array([[ -1.39600464, 9.69718343, -2.00394725, -2.59147366,
-1.91246681, 2.07361175, 123.01833742]]),
),
tuple(
355.7695591897,
355.7695549121,
array([[ 9.76047401, 0.84696075, -2.00394725, -3.04310053,
-1.99338573, 2.1185589 , 271.35743739]]),
),

View File

@ -2,52 +2,52 @@
# name: test_log_spaced_fixed_orientation_mcmc_basic
list([
tuple(
50.5683119299,
50.5632126772,
array([[ 0. , 0. , 10. , -2.3960853 , 4.23246234,
2.26169242, 39.39900844]]),
),
tuple(
50.5683119299,
50.5632126772,
array([[ 0. , 0. , 10. , -2.3960853 , 4.23246234,
2.26169242, 39.39900844]]),
),
tuple(
47.408654554,
47.4038652151,
array([[ 0. , 0. , 10. , -2.03666518, 4.14084039,
2.21309317, 47.82371559]]),
),
tuple(
47.408654554,
47.4038652151,
array([[ 0. , 0. , 10. , -2.03666518, 4.14084039,
2.21309317, 47.82371559]]),
),
tuple(
47.408654554,
47.4038652151,
array([[ 0. , 0. , 10. , -2.03666518, 4.14084039,
2.21309317, 47.82371559]]),
),
tuple(
47.408654554,
47.4038652151,
array([[ 0. , 0. , 10. , -2.03666518, 4.14084039,
2.21309317, 47.82371559]]),
),
tuple(
22.9327902847,
22.9304785991,
array([[ 0. , 0. , 10. , -1.63019717, 3.97041764,
2.53115835, 38.2051999 ]]),
),
tuple(
28.8119773322,
28.8090658953,
array([[ 0. , 0. , 10. , -1.14570315, 4.07709911,
2.48697441, 49.58615195]]),
),
tuple(
28.8119773322,
28.8090658953,
array([[ 0. , 0. , 10. , -1.14570315, 4.07709911,
2.48697441, 49.58615195]]),
),
tuple(
40.9740600543,
40.9699102596,
array([[ 0. , 0. , 10. , -0.50178755, 3.83878089,
2.93560796, 82.07827571]]),
),

View File

@ -43,7 +43,7 @@ def get_cost_function():
dot_input_array = pdme.measurement.input_types.dot_inputs_to_array(dot_inputs)
actual_dipoles = model.get_dipoles(0, numpy.random.default_rng(SEED_TO_USE))
actual_measurements = actual_dipoles.get_dot_measurements(dot_inputs)
actual_measurements = actual_dipoles.get_potential_dot_measurements(dot_inputs)
actual_measurements_array = numpy.array([m.v for m in actual_measurements])
def cost_to_use(sample_dipoleses: numpy.ndarray) -> numpy.ndarray:

View File

@ -43,7 +43,7 @@ def get_cost_function():
dot_input_array = pdme.measurement.input_types.dot_inputs_to_array(dot_inputs)
actual_dipoles = model.get_dipoles(0, numpy.random.default_rng(SEED_TO_USE))
actual_measurements = actual_dipoles.get_dot_measurements(dot_inputs)
actual_measurements = actual_dipoles.get_potential_dot_measurements(dot_inputs)
actual_measurements_array = numpy.array([m.v for m in actual_measurements])
def cost_to_use(sample_dipoleses: numpy.ndarray) -> numpy.ndarray:

View File

@ -47,7 +47,7 @@ def get_cost_function():
dot_input_array = pdme.measurement.input_types.dot_inputs_to_array(dot_inputs)
actual_dipoles = model.get_dipoles(0, numpy.random.default_rng(SEED_TO_USE))
actual_measurements = actual_dipoles.get_dot_measurements(dot_inputs)
actual_measurements = actual_dipoles.get_potential_dot_measurements(dot_inputs)
actual_measurements_array = numpy.array([m.v for m in actual_measurements])
def cost_to_use(sample_dipoleses: numpy.ndarray) -> numpy.ndarray:

View File

@ -14,12 +14,12 @@
# name: test_fast_spin_qubit_frequency_tarucha_calc
list([
list([
0.24485375860291592,
0.009068657726033923,
1.1471308805198364,
0.042486328908142086,
]),
list([
0.0001499877991005419,
0.00011239982757520363,
0.0008292459978410822,
0.0006214312613006971,
]),
])
# ---

View File

@ -1,9 +1,24 @@
import numpy
import pdme.util.fast_nonlocal_spectrum
import pdme.measurement
import logging
import pytest
def dipole_from_array(arr: numpy.ndarray) -> pdme.measurement.OscillatingDipole:
return pdme.measurement.OscillatingDipole(arr[0:3], arr[3:6], arr[6])
def s_potential_from_arrays(
dipole_array: numpy.ndarray, dotf_pair_array: numpy.ndarray
) -> float:
dipole = dipole_from_array(dipole_array)
r1 = dotf_pair_array[0][0:3]
f1 = dotf_pair_array[0][3]
r2 = dotf_pair_array[1][0:3]
return dipole.s_electric_potential_for_dot_pair(r1, r2, f1)
def test_fast_nonlocal_calc():
d1 = [1, 2, 3, 4, 5, 6, 7]
d2 = [1, 2, 3, 4, 5, 6, 8]
@ -16,21 +31,11 @@ def test_fast_nonlocal_calc():
[[[-1, -2, -3, 11], [-1, 2, 5, 11]], [[-1, -2, -3, 6], [2, 4, 6, 6]]]
)
# expected_ij is for pair i, dipole j
expected_11 = 0.000021124454334947546213
expected_12 = 0.000022184755131682365135
expected_13 = 0.0000053860643617855849275
expected_14 = -0.0000023069501696755220764
expected_21 = 0.00022356021100884617796
expected_22 = 0.00021717277640859343002
expected_23 = 0.000017558321044891869169
expected_24 = -0.000034714318479634499683
expected = numpy.array(
[
[expected_11, expected_21],
[expected_12, expected_22],
[expected_13, expected_23],
[expected_14, expected_24],
[s_potential_from_arrays(dipole_array, dot_pair) for dot_pair in dot_pairs]
for dipole_array in dipoles
]
)

View File

@ -1,11 +1,26 @@
import numpy
import pdme.util.fast_nonlocal_spectrum
import pdme.measurement
import logging
import pytest
_logger = logging.getLogger(__name__)
def dipole_from_array(arr: numpy.ndarray) -> pdme.measurement.OscillatingDipole:
return pdme.measurement.OscillatingDipole(arr[0:3], arr[3:6], arr[6])
def s_potential_from_arrays(
dipole_array: numpy.ndarray, dotf_pair_array: numpy.ndarray
) -> float:
dipole = dipole_from_array(dipole_array)
r1 = dotf_pair_array[0][0:3]
f1 = dotf_pair_array[0][3]
r2 = dotf_pair_array[1][0:3]
return dipole.s_electric_potential_for_dot_pair(r1, r2, f1)
def test_fast_nonlocal_calc_multidipole():
d1 = [1, 2, 3, 4, 5, 6, 7]
d2 = [1, 2, 3, 4, 5, 6, 8]
@ -18,19 +33,19 @@ def test_fast_nonlocal_calc_multidipole():
[[[-1, -2, -3, 11], [-1, 2, 5, 11]], [[-1, -2, -3, 6], [2, 4, 6, 6]]]
)
# expected_ij is for pair i, dipole j
expected_11 = 0.000021124454334947546213
expected_12 = 0.000022184755131682365135
expected_13 = 0.0000053860643617855849275
expected_14 = -0.0000023069501696755220764
expected_21 = 0.00022356021100884617796
expected_22 = 0.00021717277640859343002
expected_23 = 0.000017558321044891869169
expected_24 = -0.000034714318479634499683
expected = numpy.array(
[
[expected_11 + expected_12, expected_21 + expected_22],
[expected_13 + expected_14, expected_23 + expected_24],
[
sum(
[
s_potential_from_arrays(dipole_array, dot_pair)
for dipole_array in dipoles
]
)
for dot_pair in dot_pairs
]
for dipoles in dipoleses
]
)

View File

@ -1,6 +1,21 @@
import numpy
import pdme.util.fast_v_calc
import pdme.measurement
def dipole_from_array(arr: numpy.ndarray) -> pdme.measurement.OscillatingDipole:
return pdme.measurement.OscillatingDipole(arr[0:3], arr[3:6], arr[6])
def s_potential_from_arrays(
dipole_array: numpy.ndarray, dotf_array: numpy.ndarray
) -> float:
dipole = dipole_from_array(dipole_array)
r = dotf_array[0:3]
f = dotf_array[3]
return dipole.s_electric_potential_at_position(r, f)
def test_fast_v_calc():
d1 = [1, 2, 3, 4, 5, 6, 7]
@ -9,11 +24,11 @@ def test_fast_v_calc():
dipoles = numpy.array([d1, d2])
dot_inputs = numpy.array([[-1, -1, -1, 11], [2, 3, 1, 5.5]])
# expected_ij is for dot i, dipole j
expected_11 = 0.00001421963287022476
expected_12 = 0.00001107180225755457
expected_21 = 0.000345021108583681380388722
expected_22 = 0.0000377061050587914705139781
expected_11 = s_potential_from_arrays(dipoles[0], dot_inputs[0])
expected_12 = s_potential_from_arrays(dipoles[1], dot_inputs[0])
expected_21 = s_potential_from_arrays(dipoles[0], dot_inputs[1])
expected_22 = s_potential_from_arrays(dipoles[1], dot_inputs[1])
expected = numpy.array([[expected_11, expected_21], [expected_12, expected_22]])
@ -31,11 +46,11 @@ def test_fast_v_calc_multidipoles():
dipoles = numpy.array([[d1, d2]])
dot_inputs = numpy.array([[-1, -1, -1, 11], [2, 3, 1, 5.5]])
# expected_ij is for dot i, dipole j
expected_11 = 0.00001421963287022476
expected_12 = 0.00001107180225755457
expected_21 = 0.000345021108583681380388722
expected_22 = 0.0000377061050587914705139781
expected_11 = s_potential_from_arrays(dipoles[0][0], dot_inputs[0])
expected_12 = s_potential_from_arrays(dipoles[0][1], dot_inputs[0])
expected_21 = s_potential_from_arrays(dipoles[0][0], dot_inputs[1])
expected_22 = s_potential_from_arrays(dipoles[0][1], dot_inputs[1])
expected = numpy.array([[expected_11 + expected_12, expected_21 + expected_22]])
@ -48,7 +63,7 @@ def test_fast_v_calc_multidipoles():
def test_fast_v_calc_big_multidipole():
dipoles = numpy.array(
dipoleses = numpy.array(
[
[
[1, 1, 5, 6, 3, 1, 1],
@ -72,25 +87,21 @@ def test_fast_v_calc_big_multidipole():
]
)
expected = numpy.array(
expected = [
[
[
0.0010151687742365581690202135,
0.00077627527320628609782627266,
0.00043313471258511003340648713,
0.000077184305988088453637005111,
],
[
0.000041099091967966890657097060,
0.0019377687238977568792327845,
0.0085903193415282984161225029,
0.00014557676715208209310911838,
],
sum(
[
s_potential_from_arrays(dipole_array, dot_input)
for dipole_array in dipole_config
]
)
for dot_input in dot_inputs
]
)
for dipole_config in dipoleses
]
numpy.testing.assert_allclose(
pdme.util.fast_v_calc.fast_vs_for_dipoleses(dot_inputs, dipoles),
pdme.util.fast_v_calc.fast_vs_for_dipoleses(dot_inputs, dipoleses),
expected,
err_msg="Voltages at dot aren't as expected for multidipole calc.",
)
@ -107,28 +118,3 @@ def test_between():
expected = numpy.array([False, False, True])
numpy.testing.assert_array_equal(actual, expected, err_msg="Between calc wrong")
def test_fast_v_calc_asymmetric_multidipoles_but_symmetric():
# expected format is [px, py, pz, sx, sy, sz, e1, e2, w]
d1 = [1, 2, 3, 4, 5, 6, 1, 1, 7 / 2]
d2 = [2, 5, 3, 4, -5, -6, 2, 2, 2 / 2]
dipoles = numpy.array([[d1, d2]])
dot_inputs = numpy.array([[-1, -1, -1, 11], [2, 3, 1, 5.5]])
# expected_ij is for dot i, dipole j
expected_11 = 0.00001421963287022476
expected_12 = 0.00001107180225755457
expected_21 = 0.000345021108583681380388722
expected_22 = 0.0000377061050587914705139781
expected = numpy.array([[expected_11 + expected_12, expected_21 + expected_22]])
numpy.testing.assert_allclose(
pdme.util.fast_v_calc.fast_vs_for_asymmetric_dipoleses(
dot_inputs, dipoles, 1e10
),
expected,
err_msg="Voltages at dot aren't as expected for multidipole calc.",
)