Compare commits
10 Commits
Author | SHA1 | Date | |
---|---|---|---|
885508e104 | |||
6193ecb9c9 | |||
5ad442750e | |||
9b1538b3c6 | |||
7b277fdc85 | |||
e5fc1207a8 | |||
387a607e09 | |||
9e6d1df559 | |||
45031857f2 | |||
64181eeef2 |
28
CHANGELOG.md
28
CHANGELOG.md
@ -2,6 +2,34 @@
|
||||
|
||||
All notable changes to this project will be documented in this file. See [standard-version](https://github.com/conventional-changelog/standard-version) for commit guidelines.
|
||||
|
||||
## [1.5.0](https://gitea.deepak.science:2222/physics/pdme/compare/1.4.0...1.5.0) (2024-05-17)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* adds mcmc chain that returns number of repeats ([6193ecb](https://gitea.deepak.science:2222/physics/pdme/commit/6193ecb9c9f7a21d24e860987a7107549a4b2fa7))
|
||||
|
||||
## [1.4.0](https://gitea.deepak.science:2222/physics/pdme/compare/1.3.0...1.4.0) (2024-05-17)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* adds relative squared diff calc utility method ([9b1538b](https://gitea.deepak.science:2222/physics/pdme/commit/9b1538b3c63bfaf2a779bb109cd160a8d7887195))
|
||||
|
||||
## [1.3.0](https://gitea.deepak.science:2222/physics/pdme/compare/1.2.0...1.3.0) (2024-05-17)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* adds utility function for sorting samples by frequency for subspace simulation ([e5fc120](https://gitea.deepak.science:2222/physics/pdme/commit/e5fc1207a8b7d5b67208ad825907baa442eec648))
|
||||
|
||||
## [1.2.0](https://gitea.deepak.science:2222/physics/pdme/compare/1.1.0...1.2.0) (2024-05-03)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* adds pdme fast calc for e field xs ([9e6d1df](https://gitea.deepak.science:2222/physics/pdme/commit/9e6d1df559e58998851a1c2bf24fcc46d8c1b148))
|
||||
|
||||
## [1.1.0](https://gitea.deepak.science:2222/physics/pdme/compare/1.0.0...1.1.0) (2024-05-02)
|
||||
|
||||
|
||||
|
5029
diagnosis1.nb
5029
diagnosis1.nb
File diff suppressed because it is too large
Load Diff
@ -99,3 +99,65 @@ class DipoleModel:
|
||||
else:
|
||||
chain.append((numpy.squeeze(current_cost).item(), current))
|
||||
return chain
|
||||
|
||||
def get_repeat_counting_mcmc_chain(
|
||||
self,
|
||||
seed,
|
||||
cost_function,
|
||||
chain_length,
|
||||
threshold_cost: float,
|
||||
stdevs: pdme.subspace_simulation.MCMCStandardDeviation,
|
||||
initial_cost: Optional[float] = None,
|
||||
rng_arg: Optional[numpy.random.Generator] = None,
|
||||
) -> Tuple[int, List[Tuple[float, numpy.ndarray]]]:
|
||||
"""
|
||||
performs constrained markov chain monte carlo starting on seed parameter.
|
||||
The cost function given is used as a constrained to condition the chain;
|
||||
a new state is only accepted if cost_function(state) < cost_function(previous_state).
|
||||
The stdevs passed in are the stdevs we're expected to use.
|
||||
|
||||
Because we're using this for subspace simulation where our proposal function is not too important, we're in good shape.
|
||||
Note that for our adaptive stdevs to work, there's an unwritten contract that we sort each dipole in the state by frequency (increasing).
|
||||
|
||||
The seed is a list of dipoles, and each chain state is a list of dipoles as well.
|
||||
|
||||
initial_cost is a performance guy that lets you pre-populate the initial cost used to define the condition.
|
||||
Probably premature optimisation.
|
||||
|
||||
Chain has type of [ (cost: float, state: dipole_ndarray ) ] format,
|
||||
returning (repeat_count, chain) to keep track of number of repeats
|
||||
"""
|
||||
_logger.debug(
|
||||
f"Starting Markov Chain Monte Carlo with seed: {seed} for chain length {chain_length} and provided stdevs {stdevs}"
|
||||
)
|
||||
chain: List[Tuple[float, numpy.ndarray]] = []
|
||||
if initial_cost is None:
|
||||
current_cost = cost_function(numpy.array([seed]))
|
||||
else:
|
||||
current_cost = initial_cost
|
||||
current = seed
|
||||
repeat_event_count = 0
|
||||
for _ in range(chain_length):
|
||||
dips = []
|
||||
for dipole_index, dipole in enumerate(current):
|
||||
_logger.debug(dipole_index)
|
||||
_logger.debug(dipole)
|
||||
stdev = stdevs[dipole_index]
|
||||
tentative_dip = self.markov_chain_monte_carlo_proposal(
|
||||
dipole, stdev, rng_arg
|
||||
)
|
||||
|
||||
dips.append(tentative_dip)
|
||||
dips_array = pdme.subspace_simulation.sort_array_of_dipoles_by_frequency(
|
||||
dips
|
||||
)
|
||||
tentative_cost = cost_function(numpy.array([dips_array]))[0]
|
||||
if tentative_cost < threshold_cost:
|
||||
chain.append((numpy.squeeze(tentative_cost).item(), dips_array))
|
||||
current = dips_array
|
||||
current_cost = tentative_cost
|
||||
else:
|
||||
# repeating a sample, increase count
|
||||
repeat_event_count += 1
|
||||
chain.append((numpy.squeeze(current_cost).item(), current))
|
||||
return (repeat_event_count, chain)
|
||||
|
@ -41,11 +41,30 @@ def sort_array_of_dipoles_by_frequency(configuration) -> numpy.ndarray:
|
||||
Say we have a situation of 2 dipoles, and we've created 8 samples. Then we'll have an (8, 2, 7) numpy array.
|
||||
For each of the 8 samples, we want the 2 dipoles to be in order of frequency.
|
||||
|
||||
This just sorts each sample, the 2x7 array.
|
||||
|
||||
Utility function.
|
||||
"""
|
||||
return numpy.array(sorted(configuration, key=lambda l: l[6]))
|
||||
|
||||
|
||||
def sort_array_of_dipoleses_by_frequency(configurations) -> numpy.ndarray:
|
||||
"""
|
||||
Say we have a situation of 2 dipoles, and we've created 8 samples. Then we'll have an (8, 2, 7) numpy array.
|
||||
For each of the 8 samples, we want the 2 dipoles to be in order of frequency.
|
||||
|
||||
This is the wrapper that sorts everything.
|
||||
|
||||
Utility function.
|
||||
"""
|
||||
return numpy.array(
|
||||
[
|
||||
sort_array_of_dipoles_by_frequency(configuration)
|
||||
for configuration in configurations
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
__all__ = [
|
||||
"DipoleStandardDeviation",
|
||||
"MCMCStandardDeviation",
|
||||
|
@ -18,3 +18,13 @@ def proportional_costs_vs_actual_measurement(
|
||||
dot_inputs_array, dipoles_to_test
|
||||
)
|
||||
return proportional_cost(actual_measurement_array, vals)
|
||||
|
||||
|
||||
def relative_square_diffs(
|
||||
approx: numpy.ndarray, target: numpy.ndarray
|
||||
) -> numpy.ndarray:
|
||||
# Assume that both approx and target are arrays of length m
|
||||
# Approx can broadcast if additional indexes to the left
|
||||
# diffs.shape = [ m ]
|
||||
diffs = (approx - target) ** 2 / (target**2)
|
||||
return diffs.sum(axis=-1)
|
||||
|
@ -252,10 +252,15 @@ def fast_s_spin_qubit_tarucha_nonlocal_dipoleses(
|
||||
_logger.debug(f"alphses1: {alphses1}")
|
||||
_logger.debug(f"alphses2: {alphses2}")
|
||||
|
||||
# ws has shape (A, j), so it becomes (A, 1, j) in numerator with the new axis
|
||||
# f1s has shape (m), so we get in the denominator (m, 1) + (A, 1, j)
|
||||
# This becomes (A, m, j)
|
||||
bses = 2 * ws[:, None, :] / ((numpy.pi * f1s[:, None]) ** 2 + ws[:, None, :] ** 2)
|
||||
if _logger.isEnabledFor(logging.DEBUG):
|
||||
_logger.debug(f"bses: {bses}")
|
||||
|
||||
# alphas have (A, 1, j), betas have (A, m, j)
|
||||
# Final result is (A, m, j)
|
||||
_logger.debug(f"Raw pair calc: [{alphses1 * alphses2 * bses}]")
|
||||
return numpy.einsum("...j->...", alphses1 * alphses2 * bses)
|
||||
|
||||
|
@ -12,28 +12,44 @@ def fast_vs_for_dipoles(
|
||||
No error correction here baby.
|
||||
Expects dot_inputs to be numpy array of [rx, ry, rz, f] entries, so a n by 4 where n is number of measurement points.
|
||||
"""
|
||||
# name indexes:
|
||||
# A: dipole config index
|
||||
# cart: cartesian index
|
||||
# m: measurement index
|
||||
|
||||
# [A, cart]
|
||||
ps = dipoles[:, 0:3]
|
||||
ss = dipoles[:, 3:6]
|
||||
# [A]
|
||||
ws = dipoles[:, 6]
|
||||
|
||||
_logger.debug(f"ps: {ps}")
|
||||
_logger.debug(f"ss: {ss}")
|
||||
_logger.debug(f"ws: {ws}")
|
||||
|
||||
# [m, cart]
|
||||
rs = dot_inputs[:, 0:3]
|
||||
# [m]
|
||||
fs = dot_inputs[:, 3]
|
||||
|
||||
# [m, cart] - [A, 1, cart]
|
||||
# [A, m, cart]
|
||||
diffses = rs - ss[:, None]
|
||||
|
||||
_logger.debug(f"diffses: {diffses}")
|
||||
# [A, m]
|
||||
norms = numpy.linalg.norm(diffses, axis=2) ** 3
|
||||
_logger.debug(f"norms: {norms}")
|
||||
# [A, m, cart] [A, cart] -> [A, m]
|
||||
ases = (numpy.einsum("...ji, ...i", diffses, ps) / norms) ** 2
|
||||
_logger.debug(f"ases: {ases}")
|
||||
|
||||
# [A, 1], denom [m] + [A, 1] -> [A, m]
|
||||
# [A, m]
|
||||
bses = 2 * ws[:, None] / ((numpy.pi * fs) ** 2 + ws[:, None] ** 2)
|
||||
|
||||
_logger.debug(f"bses: {bses}")
|
||||
# returns shape [A, m]
|
||||
return ases * bses
|
||||
|
||||
|
||||
@ -70,6 +86,121 @@ def fast_vs_for_dipoleses(
|
||||
return numpy.einsum("...j->...", ases * bses)
|
||||
|
||||
|
||||
def fast_efieldxs_for_dipoles(
|
||||
dot_inputs: numpy.ndarray, dipoles: numpy.ndarray
|
||||
) -> numpy.ndarray:
|
||||
"""
|
||||
No error correction here baby.
|
||||
Expects dot_inputs to be numpy array of [rx, ry, rz, f] entries, so a n by 4 where n is number of measurement points.
|
||||
"""
|
||||
# name indexes:
|
||||
# A: dipole config index
|
||||
# j: dipole index within a config
|
||||
# cart: cartesian index
|
||||
# m: measurement index
|
||||
|
||||
# Indexes [A, cart]
|
||||
ps = dipoles[:, 0:3]
|
||||
ss = dipoles[:, 3:6]
|
||||
# Indexes [A]
|
||||
ws = dipoles[:, 6]
|
||||
|
||||
# Indexes [m, cart]
|
||||
rs = dot_inputs[:, 0:3]
|
||||
# Indexes [m]
|
||||
fs = dot_inputs[:, 3]
|
||||
|
||||
# Indexes [m, cart] - [A, 1, cart]
|
||||
# Broadcasting from right
|
||||
# diffses.indexes [A, m, cart]
|
||||
diffses = rs - ss[:, None, :]
|
||||
|
||||
# [A, m, cart][2] = cart
|
||||
# norms takes out axis 2, the last one, giving [A, m]
|
||||
norms = numpy.linalg.norm(diffses, axis=2)
|
||||
|
||||
# long story but this ends up becoming (A, 1, j)
|
||||
# Some evidence is looking at ps term, which has shape (A, 1, j, cart=0) becoming (A, 1, j)
|
||||
|
||||
# [A, m, cart] einsum [A, cart] explicitly gives [A, m]
|
||||
dot_products = numpy.einsum("amc,ac->am", diffses, ps) / (norms**2)
|
||||
|
||||
# [m, A] * [cart, m, A] -> [cart, m, A], transpose that and you get [A, m, cart]
|
||||
projections = numpy.transpose(
|
||||
numpy.transpose(dot_products) * numpy.transpose(diffses)
|
||||
)
|
||||
|
||||
# numerator [A, m, cart] - [A, 1, cart] -> [A, m, cart][:, :, 0] -> [A, m]
|
||||
alphas = (3 * projections - ps[:, numpy.newaxis])[:, :, 0] / norms**3
|
||||
|
||||
# [A, m]
|
||||
ases = alphas**2
|
||||
|
||||
# [A, 1], denom [m] + [A, 1] -> [A, m]
|
||||
# [A, m]
|
||||
bses = 2 * ws[:, None] / ((numpy.pi * fs) ** 2 + ws[:, None] ** 2)
|
||||
|
||||
# return shape [A, m, j]
|
||||
return ases * bses
|
||||
|
||||
|
||||
def fast_efieldxs_for_dipoleses(
|
||||
dot_inputs: numpy.ndarray, dipoleses: numpy.ndarray
|
||||
) -> numpy.ndarray:
|
||||
"""
|
||||
No error correction here baby.
|
||||
Expects dot_inputs to be numpy array of [rx, ry, rz, f] entries, so a n by 4 where n is number of measurement points.
|
||||
|
||||
Dipoleses are expected to be array of arrays of arrays:
|
||||
list of sets of dipoles which are part of a single arrangement to be added together.
|
||||
"""
|
||||
# name indexes:
|
||||
# A: dipole config index
|
||||
# j: dipole index within a config
|
||||
# cart: cartesian index
|
||||
# m: measurement index
|
||||
|
||||
# Indexes [A, j, cart]
|
||||
ps = dipoleses[:, :, 0:3]
|
||||
ss = dipoleses[:, :, 3:6]
|
||||
# Indexes [A, j]
|
||||
ws = dipoleses[:, :, 6]
|
||||
|
||||
# Indexes [m, cart]
|
||||
rs = dot_inputs[:, 0:3]
|
||||
# Indexes [m]
|
||||
fs = dot_inputs[:, 3]
|
||||
|
||||
# Indexes [m, 1, cart] - [A, 1, j, cart]
|
||||
# Broadcasting from right
|
||||
# diffses.indexes [A, m, j, cart]
|
||||
diffses = rs[:, None] - ss[:, None, :]
|
||||
|
||||
# norms takes out axis 3, the last one, giving [A, m, j]
|
||||
norms = numpy.linalg.norm(diffses, axis=3)
|
||||
|
||||
# long story but this ends up becoming (A, 1, j)
|
||||
# Some evidence is looking at ps term, which has shape (A, 1, j, cart=0) becoming (A, 1, j)
|
||||
alphas = (
|
||||
(
|
||||
3
|
||||
* numpy.transpose(
|
||||
numpy.transpose(
|
||||
numpy.einsum("abcd,acd->abc", diffses, ps) / (norms**2)
|
||||
)
|
||||
* numpy.transpose(diffses)
|
||||
)[:, :, :, 0]
|
||||
)
|
||||
- ps[:, numpy.newaxis, :, 0]
|
||||
) / (norms**3)
|
||||
ases = alphas**2
|
||||
# bses.shape [A, m, j)]
|
||||
bses = 2 * ws[:, None, :] / ((numpy.pi * fs[:, None]) ** 2 + ws[:, None, :] ** 2)
|
||||
|
||||
# return shape [A, m, j]
|
||||
return numpy.einsum("...j->...", ases * bses)
|
||||
|
||||
|
||||
def fast_vs_for_asymmetric_dipoleses(
|
||||
dot_inputs: numpy.ndarray, dipoleses: numpy.ndarray, temp: numpy.ndarray
|
||||
) -> numpy.ndarray:
|
||||
|
@ -1,6 +1,6 @@
|
||||
[tool.poetry]
|
||||
name = "pdme"
|
||||
version = "1.1.0"
|
||||
version = "1.5.0"
|
||||
description = "Python dipole model evaluator"
|
||||
authors = ["Deepak <dmallubhotla+github@gmail.com>"]
|
||||
license = "GPL-3.0-only"
|
||||
|
@ -30,3 +30,65 @@
|
||||
]),
|
||||
])
|
||||
# ---
|
||||
# name: test_sort_dipoleses_by_freq
|
||||
list([
|
||||
list([
|
||||
list([
|
||||
100.0,
|
||||
200.0,
|
||||
300.0,
|
||||
400.0,
|
||||
500.0,
|
||||
600.0,
|
||||
0.07,
|
||||
]),
|
||||
list([
|
||||
1.0,
|
||||
2.0,
|
||||
3.0,
|
||||
4.0,
|
||||
5.0,
|
||||
6.0,
|
||||
7.0,
|
||||
]),
|
||||
list([
|
||||
10.0,
|
||||
200.0,
|
||||
30.0,
|
||||
41.0,
|
||||
315.0,
|
||||
0.31,
|
||||
100.0,
|
||||
]),
|
||||
]),
|
||||
list([
|
||||
list([
|
||||
1.0,
|
||||
1.0,
|
||||
1.0,
|
||||
1.0,
|
||||
1.0,
|
||||
1.0,
|
||||
100.0,
|
||||
]),
|
||||
list([
|
||||
22.0,
|
||||
22.2,
|
||||
2.2,
|
||||
222.0,
|
||||
22.0,
|
||||
2.0,
|
||||
200.0,
|
||||
]),
|
||||
list([
|
||||
33.0,
|
||||
33.3,
|
||||
33.0,
|
||||
3.3,
|
||||
0.33,
|
||||
0.3,
|
||||
300.0,
|
||||
]),
|
||||
]),
|
||||
])
|
||||
# ---
|
||||
|
@ -1,4 +1,5 @@
|
||||
import pdme.subspace_simulation
|
||||
import pdme.subspace_simulation.mcmc_costs
|
||||
import numpy
|
||||
|
||||
|
||||
@ -8,3 +9,23 @@ def test_proportional_costs(snapshot):
|
||||
|
||||
actual_result = pdme.subspace_simulation.proportional_cost(a, b).tolist()
|
||||
assert actual_result == snapshot
|
||||
|
||||
|
||||
def test_squared_costs_manual():
|
||||
target = numpy.array([100, 400, 900])
|
||||
approx1 = numpy.array([0, 400, 800])
|
||||
approx2 = numpy.array([200, 400, 600])
|
||||
|
||||
expected1 = 1.0123456790123457
|
||||
expected2 = 1.1111111111111111
|
||||
|
||||
actual1 = pdme.subspace_simulation.mcmc_costs.relative_square_diffs(approx1, target)
|
||||
assert actual1 == expected1
|
||||
|
||||
actual2 = pdme.subspace_simulation.mcmc_costs.relative_square_diffs(approx2, target)
|
||||
assert actual2 == expected2
|
||||
|
||||
combined_actual = pdme.subspace_simulation.mcmc_costs.relative_square_diffs(
|
||||
numpy.array([approx1, approx2]), target
|
||||
)
|
||||
numpy.testing.assert_allclose(combined_actual, [expected1, expected2], rtol=1e-14)
|
||||
|
@ -13,3 +13,28 @@ def test_sort_dipoles_by_freq(snapshot):
|
||||
|
||||
actual_sorted = pdme.subspace_simulation.sort_array_of_dipoles_by_frequency(orig)
|
||||
assert actual_sorted.tolist() == snapshot
|
||||
|
||||
|
||||
def test_sort_dipoleses_by_freq(snapshot):
|
||||
sample_1 = numpy.array(
|
||||
[
|
||||
[1, 2, 3, 4, 5, 6, 7],
|
||||
[100, 200, 300, 400, 500, 600, 0.07],
|
||||
[10, 200, 30, 41, 315, 0.31, 100],
|
||||
]
|
||||
)
|
||||
|
||||
sample_2 = numpy.array(
|
||||
[
|
||||
[1, 1, 1, 1, 1, 1, 100],
|
||||
[33, 33.3, 33, 3.3, 0.33, 0.3, 300],
|
||||
[22, 22.2, 2.2, 222, 22, 2, 200],
|
||||
]
|
||||
)
|
||||
|
||||
original_samples = numpy.array([sample_1, sample_2])
|
||||
|
||||
actual_sorted = pdme.subspace_simulation.sort_array_of_dipoleses_by_frequency(
|
||||
original_samples
|
||||
)
|
||||
assert actual_sorted.tolist() == snapshot
|
||||
|
@ -17,6 +17,15 @@ def s_potential_from_arrays(
|
||||
return dipole.s_electric_potential_at_position(r, f)
|
||||
|
||||
|
||||
def s_electric_field_x_from_arrays(
|
||||
dipole_array: numpy.ndarray, dotf_array: numpy.ndarray
|
||||
) -> float:
|
||||
dipole = dipole_from_array(dipole_array)
|
||||
r = dotf_array[0:3]
|
||||
f = dotf_array[3]
|
||||
return dipole.s_electric_fieldx_at_position(r, f)
|
||||
|
||||
|
||||
def test_fast_v_calc():
|
||||
d1 = [1, 2, 3, 4, 5, 6, 7]
|
||||
d2 = [2, 5, 3, 4, -5, -6, 2]
|
||||
@ -107,6 +116,96 @@ def test_fast_v_calc_big_multidipole():
|
||||
)
|
||||
|
||||
|
||||
def test_fast_electric_field_x_calc():
|
||||
d1 = [1, 2, 3, 4, 5, 6, 7]
|
||||
d2 = [2, 5, 3, 4, -5, -6, 2]
|
||||
|
||||
dipoles = numpy.array([d1, d2])
|
||||
|
||||
dot_inputs = numpy.array([[-1, -1, -1, 11], [2, 3, 1, 5.5]])
|
||||
|
||||
expected_11 = s_electric_field_x_from_arrays(dipoles[0], dot_inputs[0])
|
||||
expected_12 = s_electric_field_x_from_arrays(dipoles[1], dot_inputs[0])
|
||||
expected_21 = s_electric_field_x_from_arrays(dipoles[0], dot_inputs[1])
|
||||
expected_22 = s_electric_field_x_from_arrays(dipoles[1], dot_inputs[1])
|
||||
|
||||
expected = numpy.array([[expected_11, expected_21], [expected_12, expected_22]])
|
||||
|
||||
numpy.testing.assert_allclose(
|
||||
pdme.util.fast_v_calc.fast_efieldxs_for_dipoles(dot_inputs, dipoles),
|
||||
expected,
|
||||
err_msg="E x fast calc at dot aren't as expected.",
|
||||
)
|
||||
|
||||
|
||||
def test_fast_electric_field_x_calc_multidipoles():
|
||||
d1 = [1, 2, 3, 4, 5, 6, 7]
|
||||
d2 = [2, 5, 3, 4, -5, -6, 2]
|
||||
|
||||
dipoles = numpy.array([[d1, d2]])
|
||||
|
||||
dot_inputs = numpy.array([[-1, -1, -1, 11], [2, 3, 1, 5.5]])
|
||||
|
||||
expected_11 = s_electric_field_x_from_arrays(dipoles[0][0], dot_inputs[0])
|
||||
expected_12 = s_electric_field_x_from_arrays(dipoles[0][1], dot_inputs[0])
|
||||
expected_21 = s_electric_field_x_from_arrays(dipoles[0][0], dot_inputs[1])
|
||||
expected_22 = s_electric_field_x_from_arrays(dipoles[0][1], dot_inputs[1])
|
||||
|
||||
expected = numpy.array([[expected_11 + expected_12, expected_21 + expected_22]])
|
||||
|
||||
numpy.testing.assert_allclose(
|
||||
pdme.util.fast_v_calc.fast_efieldxs_for_dipoleses(dot_inputs, dipoles),
|
||||
expected,
|
||||
err_msg="E x fast calc at dot aren't as expected for multidipole calc.",
|
||||
)
|
||||
|
||||
|
||||
def test_fast_electric_field_x_calc_big_multidipole():
|
||||
|
||||
dipoleses = numpy.array(
|
||||
[
|
||||
[
|
||||
[1, 1, 5, 6, 3, 1, 1],
|
||||
[5, 3, 2, 13, 1, 1, 2],
|
||||
[-5, -5, -3, -1, -3, 8, 3],
|
||||
],
|
||||
[
|
||||
[-3, -1, -2, -2, -6, 3, 4],
|
||||
[8, 0, 2, 0, 1, 5, 5],
|
||||
[1, 4, -4, -1, -3, -5, 6],
|
||||
],
|
||||
]
|
||||
)
|
||||
|
||||
dot_inputs = numpy.array(
|
||||
[
|
||||
[1, 1, 0, 1],
|
||||
[2, 5, 6, 2],
|
||||
[3, 1, 3, 3],
|
||||
[0.5, 0.5, 0.5, 4],
|
||||
]
|
||||
)
|
||||
|
||||
expected = [
|
||||
[
|
||||
sum(
|
||||
[
|
||||
s_electric_field_x_from_arrays(dipole_array, dot_input)
|
||||
for dipole_array in dipole_config
|
||||
]
|
||||
)
|
||||
for dot_input in dot_inputs
|
||||
]
|
||||
for dipole_config in dipoleses
|
||||
]
|
||||
|
||||
numpy.testing.assert_allclose(
|
||||
pdme.util.fast_v_calc.fast_efieldxs_for_dipoleses(dot_inputs, dipoleses),
|
||||
expected,
|
||||
err_msg="E x fast calc at dot aren't as expected for multidipole calc.",
|
||||
)
|
||||
|
||||
|
||||
def test_between():
|
||||
low = numpy.array([1, 2, 3])
|
||||
high = numpy.array([6, 7, 8])
|
||||
|
Loading…
x
Reference in New Issue
Block a user