Compare commits
7 Commits
22640d72f9
...
156019fdac
Author | SHA1 | Date | |
---|---|---|---|
156019fdac | |||
c49b8eb034 | |||
c034ae81fd | |||
5acf0ac347 | |||
2a1ae3b1a7 | |||
0447b5d3a7 | |||
e894c89702 |
13
CHANGELOG.md
13
CHANGELOG.md
@ -2,6 +2,19 @@
|
||||
|
||||
All notable changes to this project will be documented in this file. See [standard-version](https://github.com/conventional-changelog/standard-version) for commit guidelines.
|
||||
|
||||
### [0.8.7](https://gitea.deepak.science:2222/physics/pdme/compare/0.8.6...0.8.7) (2022-09-17)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* adds xy model for convenience to pdme ([e894c89](https://gitea.deepak.science:2222/physics/pdme/commit/e894c897029c05a1d4754e7930ae9ba2be7a1cfd))
|
||||
* moves xy model up to model package ([2a1ae3b](https://gitea.deepak.science:2222/physics/pdme/commit/2a1ae3b1a7f7e10469b7fd2930fee0b338f0c03f))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* Correctly generates monte carlo version of xy model dipoles ([5acf0ac](https://gitea.deepak.science:2222/physics/pdme/commit/5acf0ac347382705674bb596440d27cba3730bac))
|
||||
|
||||
### [0.8.6](https://gitea.deepak.science:2222/physics/pdme/compare/0.8.5...0.8.6) (2022-06-13)
|
||||
|
||||
|
||||
|
@ -11,6 +11,10 @@ from pdme.model.log_spaced_random_choice_model import (
|
||||
LogSpacedRandomCountMultipleDipoleFixedMagnitudeModel,
|
||||
)
|
||||
|
||||
from pdme.model.log_spaced_random_choice_xy_model import (
|
||||
LogSpacedRandomCountMultipleDipoleFixedMagnitudeXYModel,
|
||||
)
|
||||
|
||||
from pdme.model.log_spaced_random_choice_fixed_orientation_model import (
|
||||
LogSpacedRandomCountMultipleDipoleFixedMagnitudeFixedOrientationModel,
|
||||
)
|
||||
@ -21,5 +25,6 @@ __all__ = [
|
||||
"MultipleDipoleFixedMagnitudeModel",
|
||||
"RandomCountMultipleDipoleFixedMagnitudeModel",
|
||||
"LogSpacedRandomCountMultipleDipoleFixedMagnitudeModel",
|
||||
"LogSpacedRandomCountMultipleDipoleFixedMagnitudeXYModel",
|
||||
"LogSpacedRandomCountMultipleDipoleFixedMagnitudeFixedOrientationModel",
|
||||
]
|
||||
|
125
pdme/model/log_spaced_random_choice_xy_model.py
Normal file
125
pdme/model/log_spaced_random_choice_xy_model.py
Normal file
@ -0,0 +1,125 @@
|
||||
import numpy
|
||||
import numpy.random
|
||||
from pdme.model.model import DipoleModel
|
||||
from pdme.measurement import (
|
||||
OscillatingDipole,
|
||||
OscillatingDipoleArrangement,
|
||||
)
|
||||
|
||||
|
||||
class LogSpacedRandomCountMultipleDipoleFixedMagnitudeXYModel(DipoleModel):
|
||||
"""
|
||||
Model of multiple oscillating dipoles with a fixed magnitude, but free rotation in XY plane. Spaced logarithmically.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
wexp_min: log-10 lower bound for dipole frequency
|
||||
wexp_min: log-10 upper bound for dipole frequency
|
||||
|
||||
pfixed : float
|
||||
The fixed dipole magnitude.
|
||||
|
||||
n_max : int
|
||||
The maximum number of dipoles.
|
||||
|
||||
prob_occupancy : float
|
||||
The probability of dipole occupancy
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
xmin: float,
|
||||
xmax: float,
|
||||
ymin: float,
|
||||
ymax: float,
|
||||
zmin: float,
|
||||
zmax: float,
|
||||
wexp_min: float,
|
||||
wexp_max: float,
|
||||
pfixed: float,
|
||||
n_max: int,
|
||||
prob_occupancy: float,
|
||||
) -> None:
|
||||
self.xmin = xmin
|
||||
self.xmax = xmax
|
||||
self.ymin = ymin
|
||||
self.ymax = ymax
|
||||
self.zmin = zmin
|
||||
self.zmax = zmax
|
||||
self.wexp_min = wexp_min
|
||||
self.wexp_max = wexp_max
|
||||
self.pfixed = pfixed
|
||||
self.rng = numpy.random.default_rng()
|
||||
self.n_max = n_max
|
||||
if prob_occupancy >= 1 or prob_occupancy <= 0:
|
||||
raise ValueError(
|
||||
f"The probability of a dipole site occupancy must be between 0 and 1, got {prob_occupancy}"
|
||||
)
|
||||
self.prob_occupancy = prob_occupancy
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f"LogSpacedRandomCountMultipleDipoleFixedMagnitudeXYModel({self.xmin}, {self.xmax}, {self.ymin}, {self.ymax}, {self.zmin}, {self.zmax}, {self.wexp_min}, {self.wexp_max}, {self.pfixed}, {self.n_max}, {self.prob_occupancy})"
|
||||
|
||||
def get_dipoles(
|
||||
self, max_frequency: float, rng_to_use: numpy.random.Generator = None
|
||||
) -> OscillatingDipoleArrangement:
|
||||
rng: numpy.random.Generator
|
||||
if rng_to_use is None:
|
||||
rng = self.rng
|
||||
else:
|
||||
rng = rng_to_use
|
||||
|
||||
dipoles = []
|
||||
|
||||
n = rng.binomial(self.n_max, self.prob_occupancy)
|
||||
|
||||
for i in range(n):
|
||||
phi = rng.uniform(0, 2 * numpy.pi)
|
||||
px = self.pfixed * numpy.cos(phi)
|
||||
py = self.pfixed * numpy.sin(phi)
|
||||
pz = 0
|
||||
s_pts = numpy.array(
|
||||
(
|
||||
rng.uniform(self.xmin, self.xmax),
|
||||
rng.uniform(self.ymin, self.ymax),
|
||||
rng.uniform(self.zmin, self.zmax),
|
||||
)
|
||||
)
|
||||
frequency = 10 ** rng.uniform(self.wexp_min, self.wexp_max)
|
||||
|
||||
dipoles.append(
|
||||
OscillatingDipole(numpy.array([px, py, pz]), s_pts, frequency)
|
||||
)
|
||||
return OscillatingDipoleArrangement(dipoles)
|
||||
|
||||
def get_monte_carlo_dipole_inputs(
|
||||
self,
|
||||
monte_carlo_n: int,
|
||||
_: float,
|
||||
rng_to_use: numpy.random.Generator = None,
|
||||
) -> numpy.ndarray:
|
||||
|
||||
rng: numpy.random.Generator
|
||||
if rng_to_use is None:
|
||||
rng = self.rng
|
||||
else:
|
||||
rng = rng_to_use
|
||||
|
||||
shape = (monte_carlo_n, self.n_max)
|
||||
phi = 2 * numpy.pi * rng.random(shape)
|
||||
|
||||
p_mask = rng.binomial(1, self.prob_occupancy, shape)
|
||||
p_magnitude = self.pfixed * p_mask
|
||||
|
||||
px = p_magnitude * numpy.cos(phi)
|
||||
py = p_magnitude * numpy.sin(phi)
|
||||
pz = p_magnitude * 0
|
||||
|
||||
sx = rng.uniform(self.xmin, self.xmax, shape)
|
||||
sy = rng.uniform(self.ymin, self.ymax, shape)
|
||||
sz = rng.uniform(self.zmin, self.zmax, shape)
|
||||
|
||||
w = 10 ** rng.uniform(self.wexp_min, self.wexp_max, shape)
|
||||
|
||||
return numpy.stack([px, py, pz, sx, sy, sz, w], axis=-1)
|
25
poetry.lock
generated
25
poetry.lock
generated
@ -93,7 +93,7 @@ python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
|
||||
|
||||
[[package]]
|
||||
name = "coverage"
|
||||
version = "6.4.2"
|
||||
version = "7.0.3"
|
||||
description = "Code coverage measurement for Python"
|
||||
category = "dev"
|
||||
optional = false
|
||||
@ -316,8 +316,8 @@ optional = false
|
||||
python-versions = ">=3.6"
|
||||
|
||||
[package.extras]
|
||||
testing = ["pytest-benchmark", "pytest"]
|
||||
dev = ["tox", "pre-commit"]
|
||||
dev = ["pre-commit", "tox"]
|
||||
testing = ["pytest", "pytest-benchmark"]
|
||||
|
||||
[[package]]
|
||||
name = "prompt-toolkit"
|
||||
@ -426,18 +426,23 @@ coverage = {version = ">=5.2.1", extras = ["toml"]}
|
||||
pytest = ">=4.6"
|
||||
|
||||
[package.extras]
|
||||
testing = ["virtualenv", "pytest-xdist", "six", "process-tests", "hunter", "fields"]
|
||||
testing = ["fields", "hunter", "process-tests", "six", "pytest-xdist", "virtualenv"]
|
||||
|
||||
[[package]]
|
||||
name = "scipy"
|
||||
version = "1.9.0"
|
||||
description = "SciPy: Scientific Library for Python"
|
||||
version = "1.10.0"
|
||||
description = "Fundamental algorithms for scientific computing in Python"
|
||||
category = "main"
|
||||
optional = false
|
||||
python-versions = ">=3.8,<3.12"
|
||||
python-versions = "<3.12,>=3.8"
|
||||
|
||||
[package.dependencies]
|
||||
numpy = ">=1.18.5,<1.25.0"
|
||||
numpy = ">=1.19.5,<1.27.0"
|
||||
|
||||
[package.extras]
|
||||
test = ["pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "asv", "mpmath", "gmpy2", "threadpoolctl", "scikit-umfpack", "pooch"]
|
||||
doc = ["sphinx (!=4.1.0)", "pydata-sphinx-theme (==0.9.0)", "sphinx-design (>=0.2.0)", "matplotlib (>2)", "numpydoc"]
|
||||
dev = ["mypy", "typing-extensions", "pycodestyle", "flake8", "rich-click", "click", "doit (>=0.36.0)", "pydevtool"]
|
||||
|
||||
[[package]]
|
||||
name = "six"
|
||||
@ -461,7 +466,7 @@ executing = "*"
|
||||
pure-eval = "*"
|
||||
|
||||
[package.extras]
|
||||
tests = ["cython", "littleutils", "pygments", "typeguard", "pytest"]
|
||||
tests = ["pytest", "typeguard", "pygments", "littleutils", "cython"]
|
||||
|
||||
[[package]]
|
||||
name = "toml"
|
||||
@ -509,7 +514,7 @@ python-versions = "*"
|
||||
[metadata]
|
||||
lock-version = "1.1"
|
||||
python-versions = "^3.8,<3.10"
|
||||
content-hash = "ba562365abd9c6b04b231a9f307c8ae109fdb50b99e793a28a33b1438374bfbb"
|
||||
content-hash = "f5614947eb2f77e9cd8bd9dc026a924f4cb7394c3fef9cb175ab5afbe201ca73"
|
||||
|
||||
[metadata.files]
|
||||
appnope = []
|
||||
|
@ -1,6 +1,6 @@
|
||||
[tool.poetry]
|
||||
name = "pdme"
|
||||
version = "0.8.6"
|
||||
version = "0.8.7"
|
||||
description = "Python dipole model evaluator"
|
||||
authors = ["Deepak <dmallubhotla+github@gmail.com>"]
|
||||
license = "GPL-3.0-only"
|
||||
@ -9,7 +9,7 @@ readme = "README.md"
|
||||
[tool.poetry.dependencies]
|
||||
python = "^3.8,<3.10"
|
||||
numpy = "^1.22.3"
|
||||
scipy = "~1.9"
|
||||
scipy = "~1.10"
|
||||
|
||||
[tool.poetry.dev-dependencies]
|
||||
pytest = ">=6"
|
||||
|
@ -0,0 +1,206 @@
|
||||
from pdme.model import LogSpacedRandomCountMultipleDipoleFixedMagnitudeXYModel
|
||||
import numpy
|
||||
import logging
|
||||
import pytest
|
||||
|
||||
|
||||
_logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def test_random_count_multiple_dipole_xy_wrong_probability():
|
||||
with pytest.raises(ValueError):
|
||||
LogSpacedRandomCountMultipleDipoleFixedMagnitudeXYModel(
|
||||
-10, 10, -5, 5, 2, 3, 1, 2, 10, 5, 2
|
||||
)
|
||||
|
||||
|
||||
def test_repr_random_count_multiple_dipole_fixed_mag_xy():
|
||||
model = LogSpacedRandomCountMultipleDipoleFixedMagnitudeXYModel(
|
||||
-10, 10, -5, 5, 2, 3, 1, 2, 10, 5, 0.5
|
||||
)
|
||||
assert (
|
||||
repr(model)
|
||||
== "LogSpacedRandomCountMultipleDipoleFixedMagnitudeXYModel(-10, 10, -5, 5, 2, 3, 1, 2, 10, 5, 0.5)"
|
||||
), "Repr should be what I want."
|
||||
|
||||
|
||||
def test_random_count_multiple_dipole_fixed_mag_model_get_dipoles_multiple_xy():
|
||||
|
||||
p_fixed = 10
|
||||
dipole_count = 5
|
||||
|
||||
model = LogSpacedRandomCountMultipleDipoleFixedMagnitudeXYModel(
|
||||
-10, 10, -5, 5, 2, 3, 0, 5, p_fixed, dipole_count, 0.5
|
||||
)
|
||||
|
||||
dipole_arrangement = model.get_dipoles(20, numpy.random.default_rng(1234))
|
||||
dipoles = dipole_arrangement.dipoles
|
||||
|
||||
assert (
|
||||
len(dipoles) == dipole_count
|
||||
), "Should have had multiple dipole based on count generated."
|
||||
|
||||
|
||||
def test_random_count_multiple_dipole_fixed_mag_model_get_dipoles_invariant_xy():
|
||||
|
||||
x_min = -10
|
||||
x_max = 10
|
||||
y_min = -5
|
||||
y_max = 5
|
||||
z_min = 2
|
||||
z_max = 3
|
||||
p_fixed = 10
|
||||
max_frequency = 5
|
||||
|
||||
model = LogSpacedRandomCountMultipleDipoleFixedMagnitudeXYModel(
|
||||
x_min, x_max, y_min, y_max, z_min, z_max, 0, max_frequency, p_fixed, 1, 0.5
|
||||
)
|
||||
model.rng = numpy.random.default_rng(1234)
|
||||
|
||||
dipole_arrangement = model.get_dipoles(5)
|
||||
dipoles = dipole_arrangement.dipoles
|
||||
|
||||
assert len(dipoles) == 1, "Should have only had one dipole generated."
|
||||
for i in range(10):
|
||||
dipole_arrangement = model.get_dipoles(max_frequency)
|
||||
dipoles = dipole_arrangement.dipoles
|
||||
|
||||
assert len(dipoles) in (
|
||||
0,
|
||||
1,
|
||||
), "Should have either zero or one dipole generated."
|
||||
|
||||
if len(dipoles) > 0:
|
||||
min_s = numpy.array([x_min, y_min, z_min])
|
||||
max_s = numpy.array([x_max, y_max, z_max])
|
||||
|
||||
numpy.testing.assert_equal(
|
||||
numpy.logical_and(min_s < dipoles[0].s, max_s > dipoles[0].s),
|
||||
True,
|
||||
f"Dipole location [{dipoles[0].s}] should have been between min [{min_s}] and max [{max_s}] bounds.",
|
||||
)
|
||||
assert (
|
||||
dipoles[0].w < 10 ** max_frequency and dipoles[0].w > 10**0
|
||||
), "Dipole frequency should have been between 0 and max."
|
||||
|
||||
numpy.testing.assert_allclose(
|
||||
numpy.linalg.norm(dipoles[0].p),
|
||||
p_fixed,
|
||||
err_msg="Should have had the expected dipole moment magnitude.",
|
||||
)
|
||||
|
||||
_logger.warning(dipoles[0].p)
|
||||
numpy.testing.assert_allclose(
|
||||
dipoles[0].p[2],
|
||||
0,
|
||||
err_msg="Should have had zero z magnitude.",
|
||||
)
|
||||
|
||||
|
||||
def test_random_count_multiple_dipole_fixed_mag_model_get_dipoles_invariant_monte_carlo_xy():
|
||||
|
||||
x_min = -10
|
||||
x_max = 10
|
||||
y_min = -5
|
||||
y_max = 5
|
||||
z_min = 2
|
||||
z_max = 3
|
||||
p_fixed = 10
|
||||
max_frequency = 5
|
||||
monte_carlo_n = 20
|
||||
|
||||
model = LogSpacedRandomCountMultipleDipoleFixedMagnitudeXYModel(
|
||||
x_min, x_max, y_min, y_max, z_min, z_max, 0, max_frequency, p_fixed, 1, 0.5
|
||||
)
|
||||
model.rng = numpy.random.default_rng(1234)
|
||||
|
||||
dipole_arrangement = model.get_dipoles(5)
|
||||
dipoles = dipole_arrangement.dipoles
|
||||
|
||||
assert len(dipoles) == 1, "Should have only had one dipole generated."
|
||||
for i in range(10):
|
||||
dipoles = model.get_monte_carlo_dipole_inputs(monte_carlo_n, max_frequency)
|
||||
|
||||
min_s = numpy.array([x_min, y_min, z_min])
|
||||
max_s = numpy.array([x_max, y_max, z_max])
|
||||
|
||||
_logger.warning(dipoles)
|
||||
_logger.warning(dipoles[:, 0, 0:3])
|
||||
_logger.warning(dipoles[:, 0, 3:6])
|
||||
_logger.warning(dipoles[:, 0, 6])
|
||||
|
||||
ps = dipoles[:, 0, 0:3]
|
||||
ss = dipoles[:, 0, 3:6]
|
||||
ws = dipoles[:, 0, 6]
|
||||
|
||||
numpy.testing.assert_equal(
|
||||
numpy.logical_and(min_s < ss, max_s > ss).all(),
|
||||
True,
|
||||
f"Dipole location [{ss}] should have been between min [{min_s}] and max [{max_s}] bounds.",
|
||||
)
|
||||
assert (ws < 10**max_frequency).all() and (
|
||||
ws > 10**0
|
||||
).all(), "Dipole frequency should have been between 0 and max."
|
||||
|
||||
norms = numpy.linalg.norm(ps, axis=1)
|
||||
filtered_norms = norms[norms > 0]
|
||||
numpy.testing.assert_allclose(
|
||||
filtered_norms,
|
||||
p_fixed,
|
||||
err_msg="Should have had the expected dipole moment magnitude.",
|
||||
)
|
||||
|
||||
numpy.testing.assert_allclose(
|
||||
ps[:, 2],
|
||||
0,
|
||||
err_msg="Should have had zero z magnitude.",
|
||||
)
|
||||
|
||||
|
||||
def test_random_count_multiple_dipole_shape():
|
||||
|
||||
x_min = -10
|
||||
x_max = 10
|
||||
y_min = -5
|
||||
y_max = 5
|
||||
z_min = 2
|
||||
z_max = 3
|
||||
p_fixed = 10
|
||||
max_frequency = 5
|
||||
num_dipoles = 13
|
||||
monte_carlo_n = 11
|
||||
|
||||
model = LogSpacedRandomCountMultipleDipoleFixedMagnitudeXYModel(
|
||||
x_min,
|
||||
x_max,
|
||||
y_min,
|
||||
y_max,
|
||||
z_min,
|
||||
z_max,
|
||||
0,
|
||||
max_frequency,
|
||||
p_fixed,
|
||||
num_dipoles,
|
||||
0.5,
|
||||
)
|
||||
model.rng = numpy.random.default_rng(1234)
|
||||
|
||||
actual_shape = model.get_monte_carlo_dipole_inputs(
|
||||
monte_carlo_n, max_frequency
|
||||
).shape
|
||||
|
||||
numpy.testing.assert_equal(
|
||||
actual_shape,
|
||||
(monte_carlo_n, num_dipoles, 7),
|
||||
err_msg="shape was wrong for monte carlo outputs",
|
||||
)
|
||||
|
||||
actual_shape = model.get_monte_carlo_dipole_inputs(
|
||||
monte_carlo_n, max_frequency, rng_to_use=numpy.random.default_rng(1515)
|
||||
).shape
|
||||
|
||||
numpy.testing.assert_equal(
|
||||
actual_shape,
|
||||
(monte_carlo_n, num_dipoles, 7),
|
||||
err_msg="shape was wrong for monte carlo outputs",
|
||||
)
|
Loading…
x
Reference in New Issue
Block a user