from pdme.model.fixed_magnitude_model import FixedMagnitudeModel, FixedMagnitudeDiscretisation from pdme.measurement import OscillatingDipole, OscillatingDipoleArrangement import itertools import logging import multiprocessing import numpy import csv import random FILENAME = "z-band-fixed-magnitude-middle-all-dots-square.csv" csv_fields = ["dipole_mom", "dipole_loc", "dipole_freq", "low_success", "low_count", "medium_success", "medium_count", "high_success", "high_count"] def get_uniform_sphere(): r = 6 a = random.uniform(-10, 10) b = random.uniform(-10, 10) c = random.uniform(-10, 10) f = (a**2 + b**2 + c**2)**.5 return (a * r / f, b * r / f, c * r / f) def get_pt(): return (get_uniform_sphere(), (random.uniform(-10, 10), random.uniform(-10, 10), random.uniform(3.5, 4.5))) def get_a_result(discretisation, dots, index): return (index, discretisation.solve_for_index(dots, index)) def main(): with open(FILENAME, "a", newline="") as outfile: # csv fields writer = csv.DictWriter(outfile, fieldnames=csv_fields, dialect='unix') writer.writeheader() for run in range(1, 101): p_pts, s_pts = get_pt() dipoles = OscillatingDipoleArrangement([OscillatingDipole(p_pts, s_pts, run)]) logging.info(f"gonna work on point {(p_pts, s_pts, run)}") dot_inputs = list(itertools.chain.from_iterable( (([1, 2, 0], f), ([1, 1, 0], f), ([2, 1, 0], f), ([2, 2, 0], f)) for f in numpy.arange(1, 10, 2) )) dots = dipoles.get_dot_measurements(dot_inputs) model_low = FixedMagnitudeModel(-10, 10, -10, 10, 2.5, 3.5, 6, 1) discretisation_low = FixedMagnitudeDiscretisation(model_low, 6, 6, 5, 5, 5) model_medium = FixedMagnitudeModel(-10, 10, -10, 10, 3.5, 4.5, 6, 1) discretisation_medium = FixedMagnitudeDiscretisation(model_medium, 6, 6, 5, 5, 5) model_high = FixedMagnitudeModel(-10, 10, -10, 10, 4.5, 5.5, 6, 1) discretisation_high = FixedMagnitudeDiscretisation(model_high, 6, 6, 5, 5, 5) with multiprocessing.Pool(multiprocessing.cpu_count()-1 or 1) as pool: results_low = pool.starmap(get_a_result, zip(itertools.repeat(discretisation_low), itertools.repeat(dots), discretisation_low.all_indices())) with multiprocessing.Pool(multiprocessing.cpu_count()-1 or 1) as pool: results_medium = pool.starmap(get_a_result, zip(itertools.repeat(discretisation_medium), itertools.repeat(dots), discretisation_medium.all_indices())) with multiprocessing.Pool(multiprocessing.cpu_count()-1 or 1) as pool: results_high = pool.starmap(get_a_result, zip(itertools.repeat(discretisation_high), itertools.repeat(dots), discretisation_high.all_indices())) count_low = 0 success_low = 0 for idx, result in results_low: count_low += 1 if result.success and result.cost <= 1e-10 and numpy.linalg.norm(result.x[0:3]) < 10: answer = result.normalised_x success_low += 1 else: answer = None count_medium = 0 success_medium = 0 for idx, result in results_medium: count_medium += 1 if result.success and result.cost <= 1e-10 and numpy.linalg.norm(result.x[0:3]) < 10: answer = result.normalised_x success_medium += 1 else: answer = None count_high = 0 success_high = 0 for idx, result in results_high: count_high += 1 if result.success and result.cost <= 1e-10 and numpy.linalg.norm(result.x[0:3]) < 10: answer = result.normalised_x success_high += 1 else: answer = None logging.info(f"Low : Out of {count_low} cells, {success_low} were successful") logging.info(f"Medium: Out of {count_medium} cells, {success_medium} were successful") logging.info(f"High : Out of {count_high} cells, {success_high} were successful") with open(FILENAME, "a", newline='') as outfile: writer = csv.DictWriter(outfile, fieldnames=csv_fields, dialect='unix') writer.writerow({ "dipole_mom": p_pts, "dipole_loc": s_pts, "dipole_freq": run, "low_success": success_low, "high_success": success_high, "medium_success": success_medium, "low_count": count_low, "medium_count": count_medium, "high_count": count_high }) if __name__ == "__main__": logging.basicConfig(level=logging.INFO) main()