from pdme.model.unrestricted_model import UnrestrictedModel, UnrestrictedDiscretisation from pdme.measurement import OscillatingDipole, OscillatingDipoleArrangement import itertools import logging import multiprocessing import numpy def get_a_result(discretisation, dots, index): return (index, discretisation.solve_for_index(dots, index)) def main(): dipoles = OscillatingDipoleArrangement([OscillatingDipole((0.9602915510740146, -4.026029745743671, -9.049015619049385), (8.414994532717355, -4.618786432010118, 4.124722380672804), 7)]) dot_inputs = list(itertools.chain.from_iterable( (([1, 2, 0], f), ([1, 1, 0], f), ([2, 1, 0], f), ([2, 2, 0], f)) for f in numpy.arange(1, 10, 2) )) dots = dipoles.get_dot_measurements(dot_inputs) model_low = UnrestrictedModel(-10, 10, -10, 10, 2.5, 3.5, 1) discretisation_low = UnrestrictedDiscretisation(model_low, 6, 6, 3, 5, 5, 5, 10) model_medium = UnrestrictedModel(-10, 10, -10, 10, 3.5, 4.5, 1) discretisation_medium = UnrestrictedDiscretisation(model_medium, 6, 6, 3, 5, 5, 5, 10) model_high = UnrestrictedModel(-10, 10, -10, 10, 4.5, 5.5, 1) discretisation_high = UnrestrictedDiscretisation(model_high, 6, 6, 3, 5, 5, 5, 10) with multiprocessing.Pool(multiprocessing.cpu_count()-1 or 1) as pool: results_low = pool.starmap(get_a_result, zip(itertools.repeat(discretisation_low), itertools.repeat(dots), discretisation_low.all_indices())) with multiprocessing.Pool(multiprocessing.cpu_count()-1 or 1) as pool: results_medium = pool.starmap(get_a_result, zip(itertools.repeat(discretisation_medium), itertools.repeat(dots), discretisation_medium.all_indices())) with multiprocessing.Pool(multiprocessing.cpu_count()-1 or 1) as pool: results_high = pool.starmap(get_a_result, zip(itertools.repeat(discretisation_high), itertools.repeat(dots), discretisation_high.all_indices())) count_low = 0 success_low = 0 for idx, result in results_low: count_low += 1 if result.success and result.cost <= 1e-10 and numpy.linalg.norm(result.x[0:3]) < 10: answer = result.normalised_x success_low += 1 else: answer = None count_medium = 0 success_medium = 0 for idx, result in results_medium: count_medium += 1 if result.success and result.cost <= 1e-10 and numpy.linalg.norm(result.x[0:3]) < 10: answer = result.normalised_x success_medium += 1 else: answer = None count_high = 0 success_high = 0 for idx, result in results_high: count_high += 1 if result.success and result.cost <= 1e-10 and numpy.linalg.norm(result.x[0:3]) < 10: answer = result.normalised_x success_high += 1 else: answer = None logging.info(f"Low : Out of {count_low} cells, {success_low} were successful") logging.info(f"Medium: Out of {count_medium} cells, {success_medium} were successful") logging.info(f"High : Out of {count_high} cells, {success_high} were successful") if __name__ == "__main__": logging.basicConfig(level=logging.INFO) main()