253 lines
7.0 KiB
Python
253 lines
7.0 KiB
Python
import numpy
|
|
import logging
|
|
|
|
|
|
_logger = logging.getLogger(__name__)
|
|
|
|
|
|
def fast_vs_for_dipoles(
|
|
dot_inputs: numpy.ndarray, dipoles: numpy.ndarray
|
|
) -> numpy.ndarray:
|
|
"""
|
|
No error correction here baby.
|
|
Expects dot_inputs to be numpy array of [rx, ry, rz, f] entries, so a n by 4 where n is number of measurement points.
|
|
"""
|
|
# name indexes:
|
|
# A: dipole config index
|
|
# cart: cartesian index
|
|
# m: measurement index
|
|
|
|
# [A, cart]
|
|
ps = dipoles[:, 0:3]
|
|
ss = dipoles[:, 3:6]
|
|
# [A]
|
|
ws = dipoles[:, 6]
|
|
|
|
_logger.debug(f"ps: {ps}")
|
|
_logger.debug(f"ss: {ss}")
|
|
_logger.debug(f"ws: {ws}")
|
|
|
|
# [m, cart]
|
|
rs = dot_inputs[:, 0:3]
|
|
# [m]
|
|
fs = dot_inputs[:, 3]
|
|
|
|
# [m, cart] - [A, 1, cart]
|
|
# [A, m, cart]
|
|
diffses = rs - ss[:, None]
|
|
|
|
_logger.debug(f"diffses: {diffses}")
|
|
# [A, m]
|
|
norms = numpy.linalg.norm(diffses, axis=2) ** 3
|
|
_logger.debug(f"norms: {norms}")
|
|
# [A, m, cart] [A, cart] -> [A, m]
|
|
ases = (numpy.einsum("...ji, ...i", diffses, ps) / norms) ** 2
|
|
_logger.debug(f"ases: {ases}")
|
|
|
|
# [A, 1], denom [m] + [A, 1] -> [A, m]
|
|
# [A, m]
|
|
bses = 2 * ws[:, None] / ((numpy.pi * fs) ** 2 + ws[:, None] ** 2)
|
|
|
|
_logger.debug(f"bses: {bses}")
|
|
# returns shape [A, m]
|
|
return ases * bses
|
|
|
|
|
|
def fast_vs_for_dipoleses(
|
|
dot_inputs: numpy.ndarray, dipoleses: numpy.ndarray
|
|
) -> numpy.ndarray:
|
|
"""
|
|
No error correction here baby.
|
|
Expects dot_inputs to be numpy array of [rx, ry, rz, f] entries, so a n by 4 where n is number of measurement points.
|
|
|
|
Dipoleses are expected to be array of arrays of arrays: list of sets of dipoles which are part of a single arrangement to be added together.
|
|
"""
|
|
ps = dipoleses[:, :, 0:3]
|
|
ss = dipoleses[:, :, 3:6]
|
|
ws = dipoleses[:, :, 6]
|
|
|
|
_logger.debug(f"ps: {ps}")
|
|
_logger.debug(f"ss: {ss}")
|
|
_logger.debug(f"ws: {ws}")
|
|
|
|
rs = dot_inputs[:, 0:3]
|
|
fs = dot_inputs[:, 3]
|
|
|
|
diffses = rs[:, None] - ss[:, None, :]
|
|
|
|
_logger.debug(f"diffses: {diffses}")
|
|
norms = numpy.linalg.norm(diffses, axis=3) ** 3
|
|
_logger.debug(f"norms: {norms}")
|
|
ases = (numpy.einsum("abcd,acd->abc", diffses, ps) / norms) ** 2
|
|
_logger.debug(f"ases: {ases}")
|
|
|
|
bses = 2 * ws[:, None, :] / ((numpy.pi * fs[:, None]) ** 2 + ws[:, None, :] ** 2)
|
|
_logger.debug(f"bses: {bses}")
|
|
return numpy.einsum("...j->...", ases * bses)
|
|
|
|
|
|
def fast_efieldxs_for_dipoles(
|
|
dot_inputs: numpy.ndarray, dipoles: numpy.ndarray
|
|
) -> numpy.ndarray:
|
|
"""
|
|
No error correction here baby.
|
|
Expects dot_inputs to be numpy array of [rx, ry, rz, f] entries, so a n by 4 where n is number of measurement points.
|
|
"""
|
|
# name indexes:
|
|
# A: dipole config index
|
|
# j: dipole index within a config
|
|
# cart: cartesian index
|
|
# m: measurement index
|
|
|
|
# Indexes [A, cart]
|
|
ps = dipoles[:, 0:3]
|
|
ss = dipoles[:, 3:6]
|
|
# Indexes [A]
|
|
ws = dipoles[:, 6]
|
|
|
|
# Indexes [m, cart]
|
|
rs = dot_inputs[:, 0:3]
|
|
# Indexes [m]
|
|
fs = dot_inputs[:, 3]
|
|
|
|
# Indexes [m, cart] - [A, 1, cart]
|
|
# Broadcasting from right
|
|
# diffses.indexes [A, m, cart]
|
|
diffses = rs - ss[:, None, :]
|
|
|
|
# [A, m, cart][2] = cart
|
|
# norms takes out axis 2, the last one, giving [A, m]
|
|
norms = numpy.linalg.norm(diffses, axis=2)
|
|
|
|
# long story but this ends up becoming (A, 1, j)
|
|
# Some evidence is looking at ps term, which has shape (A, 1, j, cart=0) becoming (A, 1, j)
|
|
|
|
# [A, m, cart] einsum [A, cart] explicitly gives [A, m]
|
|
dot_products = numpy.einsum("amc,ac->am", diffses, ps) / (norms**2)
|
|
|
|
# [m, A] * [cart, m, A] -> [cart, m, A], transpose that and you get [A, m, cart]
|
|
projections = numpy.transpose(
|
|
numpy.transpose(dot_products) * numpy.transpose(diffses)
|
|
)
|
|
|
|
# numerator [A, m, cart] - [A, 1, cart] -> [A, m, cart][:, :, 0] -> [A, m]
|
|
alphas = (3 * projections - ps[:, numpy.newaxis])[:, :, 0] / norms**3
|
|
|
|
# [A, m]
|
|
ases = alphas**2
|
|
|
|
# [A, 1], denom [m] + [A, 1] -> [A, m]
|
|
# [A, m]
|
|
bses = 2 * ws[:, None] / ((numpy.pi * fs) ** 2 + ws[:, None] ** 2)
|
|
|
|
# return shape [A, m, j]
|
|
return ases * bses
|
|
|
|
|
|
def fast_efieldxs_for_dipoleses(
|
|
dot_inputs: numpy.ndarray, dipoleses: numpy.ndarray
|
|
) -> numpy.ndarray:
|
|
"""
|
|
No error correction here baby.
|
|
Expects dot_inputs to be numpy array of [rx, ry, rz, f] entries, so a n by 4 where n is number of measurement points.
|
|
|
|
Dipoleses are expected to be array of arrays of arrays:
|
|
list of sets of dipoles which are part of a single arrangement to be added together.
|
|
"""
|
|
# name indexes:
|
|
# A: dipole config index
|
|
# j: dipole index within a config
|
|
# cart: cartesian index
|
|
# m: measurement index
|
|
|
|
# Indexes [A, j, cart]
|
|
ps = dipoleses[:, :, 0:3]
|
|
ss = dipoleses[:, :, 3:6]
|
|
# Indexes [A, j]
|
|
ws = dipoleses[:, :, 6]
|
|
|
|
# Indexes [m, cart]
|
|
rs = dot_inputs[:, 0:3]
|
|
# Indexes [m]
|
|
fs = dot_inputs[:, 3]
|
|
|
|
# Indexes [m, 1, cart] - [A, 1, j, cart]
|
|
# Broadcasting from right
|
|
# diffses.indexes [A, m, j, cart]
|
|
diffses = rs[:, None] - ss[:, None, :]
|
|
|
|
# norms takes out axis 3, the last one, giving [A, m, j]
|
|
norms = numpy.linalg.norm(diffses, axis=3)
|
|
|
|
# long story but this ends up becoming (A, 1, j)
|
|
# Some evidence is looking at ps term, which has shape (A, 1, j, cart=0) becoming (A, 1, j)
|
|
alphas = (
|
|
(
|
|
3
|
|
* numpy.transpose(
|
|
numpy.transpose(
|
|
numpy.einsum("abcd,acd->abc", diffses, ps) / (norms**2)
|
|
)
|
|
* numpy.transpose(diffses)
|
|
)[:, :, :, 0]
|
|
)
|
|
- ps[:, numpy.newaxis, :, 0]
|
|
) / (norms**3)
|
|
ases = alphas**2
|
|
# bses.shape [A, m, j)]
|
|
bses = 2 * ws[:, None, :] / ((numpy.pi * fs[:, None]) ** 2 + ws[:, None, :] ** 2)
|
|
|
|
# return shape [A, m, j]
|
|
return numpy.einsum("...j->...", ases * bses)
|
|
|
|
|
|
def fast_vs_for_asymmetric_dipoleses(
|
|
dot_inputs: numpy.ndarray, dipoleses: numpy.ndarray, temp: numpy.ndarray
|
|
) -> numpy.ndarray:
|
|
"""
|
|
No error correction here baby.
|
|
Expects dot_inputs to be numpy array of [rx, ry, rz, f] entries, so a n by 4 where n is number of measurement points.
|
|
|
|
Dipoleses are expected to be array of arrays of arrays:
|
|
list of sets of dipoles which are part of a single arrangement to be added together.
|
|
Within each dipole, the expected format is [px, py, pz, sx, sy, sz, e1, e2, w]
|
|
The passed in w is expected to be half the actual. This is bad, but here for historical reasons to be changed later.
|
|
"""
|
|
raw_ps = dipoleses[:, :, 0:3]
|
|
ss = dipoleses[:, :, 3:6]
|
|
e1s = dipoleses[:, :, 6]
|
|
e2s = dipoleses[:, :, 7]
|
|
raw_ws = dipoleses[:, :, 8]
|
|
|
|
rs = dot_inputs[:, 0:3]
|
|
fs = dot_inputs[:, 3]
|
|
|
|
diffses = rs[:, None] - ss[:, None, :]
|
|
|
|
_logger.warning(
|
|
"This method is very likely to be broken, and should not be used without more thought"
|
|
)
|
|
w1s = numpy.exp(-e1s / temp) * raw_ws
|
|
w2s = numpy.exp(-e2s / temp) * raw_ws
|
|
|
|
mag_prefactor = 4 * ((w1s * w2s) / ((w1s + w2s) ** 2))
|
|
ws = w1s + w2s
|
|
|
|
# some annoying broadcast thing here?
|
|
ps = (raw_ps.T * mag_prefactor.T).T
|
|
|
|
norms = numpy.linalg.norm(diffses, axis=3) ** 3
|
|
|
|
ases = (numpy.einsum("abcd,acd->abc", diffses, ps) / norms) ** 2
|
|
|
|
bses = ws[:, None, :] / ((numpy.pi * fs[:, None]) ** 2 + ws[:, None, :] ** 2)
|
|
|
|
return numpy.einsum("...j->...", ases * bses)
|
|
|
|
|
|
def between(a: numpy.ndarray, low: numpy.ndarray, high: numpy.ndarray) -> numpy.ndarray:
|
|
"""
|
|
Intended specifically for the case where a is a list of arrays, and each array must be between the single array low and high, but without error checking.
|
|
"""
|
|
return numpy.all(numpy.logical_and(low < a, high > a), axis=1)
|