105 lines
2.5 KiB
Python
105 lines
2.5 KiB
Python
import numpy
|
|
import numpy.random
|
|
from pdme.model.model import DipoleModel
|
|
from pdme.measurement import (
|
|
OscillatingDipole,
|
|
OscillatingDipoleArrangement,
|
|
)
|
|
|
|
|
|
class MultipleDipoleFixedMagnitudeModel(DipoleModel):
|
|
"""
|
|
Model of multiple oscillating dipoles with a fixed magnitude, but free rotation.
|
|
|
|
Parameters
|
|
----------
|
|
pfixed : float
|
|
The fixed dipole magnitude.
|
|
|
|
n : int
|
|
The number of dipoles.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
xmin: float,
|
|
xmax: float,
|
|
ymin: float,
|
|
ymax: float,
|
|
zmin: float,
|
|
zmax: float,
|
|
pfixed: float,
|
|
n: int,
|
|
) -> None:
|
|
self.xmin = xmin
|
|
self.xmax = xmax
|
|
self.ymin = ymin
|
|
self.ymax = ymax
|
|
self.zmin = zmin
|
|
self.zmax = zmax
|
|
self.pfixed = pfixed
|
|
self.rng = numpy.random.default_rng()
|
|
self.n = n
|
|
|
|
def __repr__(self) -> str:
|
|
return f"MultipleDipoleFixedMagnitudeModel({self.xmin}, {self.xmax}, {self.ymin}, {self.ymax}, {self.zmin}, {self.zmax}, {self.pfixed}, {self.n})"
|
|
|
|
def get_dipoles(
|
|
self, max_frequency: float, rng_to_use: numpy.random.Generator = None
|
|
) -> OscillatingDipoleArrangement:
|
|
rng: numpy.random.Generator
|
|
if rng_to_use is None:
|
|
rng = self.rng
|
|
else:
|
|
rng = rng_to_use
|
|
|
|
dipoles = []
|
|
|
|
for i in range(self.n):
|
|
theta = numpy.arccos(rng.uniform(-1, 1))
|
|
phi = rng.uniform(0, 2 * numpy.pi)
|
|
px = self.pfixed * numpy.sin(theta) * numpy.cos(phi)
|
|
py = self.pfixed * numpy.sin(theta) * numpy.sin(phi)
|
|
pz = self.pfixed * numpy.cos(theta)
|
|
s_pts = numpy.array(
|
|
(
|
|
rng.uniform(self.xmin, self.xmax),
|
|
rng.uniform(self.ymin, self.ymax),
|
|
rng.uniform(self.zmin, self.zmax),
|
|
)
|
|
)
|
|
frequency = rng.uniform(0, max_frequency)
|
|
|
|
dipoles.append(
|
|
OscillatingDipole(numpy.array([px, py, pz]), s_pts, frequency)
|
|
)
|
|
return OscillatingDipoleArrangement(dipoles)
|
|
|
|
def get_monte_carlo_dipole_inputs(
|
|
self,
|
|
monte_carlo_n: int,
|
|
max_frequency: float,
|
|
rng_to_use: numpy.random.Generator = None,
|
|
) -> numpy.ndarray:
|
|
|
|
rng: numpy.random.Generator
|
|
if rng_to_use is None:
|
|
rng = self.rng
|
|
else:
|
|
rng = rng_to_use
|
|
|
|
shape = (monte_carlo_n, self.n)
|
|
theta = 2 * numpy.pi * rng.random(shape)
|
|
phi = numpy.arccos(2 * rng.random(shape) - 1)
|
|
px = self.pfixed * numpy.cos(theta) * numpy.sin(phi)
|
|
py = self.pfixed * numpy.sin(theta) * numpy.sin(phi)
|
|
pz = self.pfixed * numpy.cos(phi)
|
|
|
|
sx = rng.uniform(self.xmin, self.xmax, shape)
|
|
sy = rng.uniform(self.ymin, self.ymax, shape)
|
|
sz = rng.uniform(self.zmin, self.zmax, shape)
|
|
|
|
w = rng.uniform(1, max_frequency, shape)
|
|
|
|
return numpy.stack([px, py, pz, sx, sy, sz, w], axis=-1)
|