import pyewjn.dielectric import numpy as np import pytest from pyewjn.baskets import CalculationParams def get_common_lindhard_dielectric(): params = CalculationParams(omega=1e9, omega_p=3.5e15, tau=1e-14, v_f=2e6) return pyewjn.dielectric.get_lindhard_dielectric(params) @pytest.mark.parametrize( "test_input,expected", [ (10, -1222.185185062794 + 1.2249999998777178e8j), (1000, 16924.14814718176 + 1.2250000020552777e8j), (1e8, 83.687499999706 + 0.00022417398943752126j), ], ) def test_lindhard_dielectric(test_input, expected): eps_to_test = get_common_lindhard_dielectric() np.testing.assert_almost_equal( eps_to_test(test_input), expected, decimal=6, err_msg="b function is off" ) @pytest.mark.parametrize( "test_input,expected", [ ((100, 100), -883.3001542404703 + 1.2566370613549341e8j), ((100, 1e5), 5.827225842825694e7 + 3.933446612656656e7j), ((100, 1e10), 1.0084823001646925 + 2.0013975538629039e-10j), ((100, 1e7), 8483.300121667038 + 0.6340397839154446), ], ) def test_zeta_pi_lindhard_dielectric(zeta_p_i_epsilon, test_input, expected): u, y = test_input actual = zeta_p_i_epsilon(np.sqrt(u**2 + y**2)) np.testing.assert_allclose( actual, expected, rtol=10**3.8, err_msg="lindhard dielectric differs from Mathematica", ) @pytest.fixture def zeta_p_i_epsilon(): params = CalculationParams( omega=1e9, omega_p=3.544907701811032e15, tau=1e-14, v_f=2e6 ) return pyewjn.dielectric.get_lindhard_dielectric(params)