import numpy as np from numpy.lib.scimath import sqrt as csqrt import pynam.util def g(w, wp): return ((wp * (w + wp)) + 1) / (csqrt(wp ** 2 - 1) * csqrt((w + wp) ** 2 - 1)) def s(k, e, v): return (e - 1j * v) / k def f(k, e, v): sv = s(k, e, v) logv = np.log(np.real_if_close((sv + 1) / (sv - 1)) + 0j) return (1 / k) * (2 * sv + ((1 - sv**2) * logv)) def i1(w, wp, k, v): gv = g(w, wp) e1 = csqrt((w + wp) ** 2 - 1) e2 = csqrt(wp ** 2 - 1) f_upper = f(k, np.real(e1 - e2), np.imag(e1 + e2) + 2 * v) * (gv + 1) f_lower = f(k, np.real(-e1 - e2), np.imag(e1 + e2) + 2 * v) * (gv - 1) return f_upper + f_lower def i2(w, wp, k, v): gv = g(w, wp) e1 = csqrt((w + wp) ** 2 - 1) e2 = csqrt(wp ** 2 - 1) f_upper = f(k, np.real(e1 - e2), np.imag(e1 + e2) + 2 * v) * (gv + 1) f_lower = f(k, np.real(e1 + e2), np.imag(e1 + e2) + 2 * v) * (gv - 1) return f_upper + f_lower def a(w, k, v, t): result = pynam.util.complex_quad.complex_quad( lambda wp: np.tanh((w + wp) / (2 * t)) * (i1(w, wp, k, v)), 1 - w, 1, epsabs=1e-10 ) return result[0] def b_int(wp, w, k, v, t): return (np.tanh((w + wp) / (2 * t)) * i1(w, wp, k, v)) - (np.tanh(wp / (2 * t)) * i2(w, wp, k, v)) def b(w, k, v, t, b_max=np.inf): return pynam.util.complex_quad( lambda wp: b_int(wp, w, k, v, t), 1, b_max )[0] def sigma_nam(w, k, v, t): return -1j * (3 / 4) * (v / w) * (-a(w, k, v, t) + b(w, k, v, t))