import numpy as np import pytest import pyewjn.dielectric import pyewjn.noise.zeta from pyewjn.baskets import CalculationParams @pytest.fixture def zeta_p_integrand_lindhard(): params = CalculationParams( omega=1e9, v_f=2e6, omega_p=3.544907701811032e15, tau=1e-14 ) eps_l = pyewjn.dielectric.get_lindhard_dielectric(params) return pyewjn.noise.zeta.get_zeta_p_integrand(eps_l) @pytest.mark.parametrize( "test_input,expected", [ # y u zeta_p_i(u, y) ((100, 100), -6.891930153028566e-13 - 7.957747045025948e-9j), ((1e5, 100), -1.0057257267146669e-10 - 4.0591966623027983e-13j), ((100, 1e5), 1.1789175285399862e-8 - 7.957833322596519e-9j), ], ) def test_zeta_p_integrand_lindhard(zeta_p_integrand_lindhard, test_input, expected): actual = zeta_p_integrand_lindhard(*test_input) np.testing.assert_allclose( actual, expected, rtol=1e-7, err_msg="Zeta_p is inaccurate for Lindhard case", verbose=True, ) @pytest.fixture def zeta_p_lindhard(): params = CalculationParams( omega=1e9, v_f=2e6, omega_p=3.544907701811032e15, tau=1e-14 ) eps_l = pyewjn.dielectric.get_lindhard_dielectric(params) return pyewjn.noise.zeta.get_zeta_p_function(eps_l) @pytest.mark.parametrize( "test_input,expected", [ # u zeta_p(u) (1, 0.000199609 - 0.000199608j), # (10, 0.00019960929309663014 - 0.00019927000998506335j), # (100, 0.0001996175250684056 - 0.0001654898843938523j), # (1e3, 0.0002003339895748246 + 0.003212370020888438j), # (1e4, 0.00028616168676982363 + 0.34096962141224463j), (1e5, 0.0025183067257958545 + 34.11087430547122j), (1e6, 0.026829658454640887 + 3411.0870128247902j), (1e7, 0.4292211181081069 + 341088.797211291j), (1e8, 14.348462224076096 + 3.391157983312813e7j), ], ) def test_zeta_p(zeta_p_lindhard, test_input, expected): actual = zeta_p_lindhard(test_input) np.testing.assert_allclose( actual, expected, rtol=1e-4, err_msg="Zeta_p is inaccurate for Lindhard case", verbose=True, )