pyewjn/pynam/dielectric/low_k_nam.py

56 lines
1.3 KiB
Python

import numpy as np
from numpy.lib.scimath import sqrt as csqrt
import pynam.util.complex_quad
def g(w, wp):
return ((wp * (w + wp)) + 1) / (csqrt(wp ** 2 - 1) * csqrt((w + wp) ** 2 - 1))
def f(k, e, v):
return ((4 / 3) * 1 / (e - 1j * v)) + (4 / 15) * (1 / ((e - 1j * v) ** 3)) * k ** 2
def i1(w, wp, k, v):
gv = g(w, wp)
e1 = csqrt((w + wp) ** 2 - 1)
e2 = csqrt(wp ** 2 - 1)
f_upper = f(k, np.real(e1 - e2), np.imag(e1 + e2) + 2 * v) * (gv + 1)
f_lower = f(k, np.real(-e1 - e2), np.imag(e1 + e2) + 2 * v) * (gv - 1)
return f_upper + f_lower
def i2(w, wp, k, v):
gv = g(w, wp)
e1 = csqrt((w + wp) ** 2 - 1)
e2 = csqrt(wp ** 2 - 1)
f_upper = f(k, np.real(e1 - e2), np.imag(e1 + e2) + 2 * v) * (gv + 1)
f_lower = f(k, np.real(e1 + e2), np.imag(e1 + e2) + 2 * v) * (gv - 1)
return f_upper + f_lower
def a(w, k, v, t):
return pynam.util.complex_quad.complex_quad(
lambda wp: np.tanh((w + wp) / (2 * t)) * (i1(w, wp, k, v)),
1 - w, 1
)[0]
def b_int(wp, w, k, v, t):
return (np.tanh((w + wp) / (2 * t)) * i1(w, wp, k, v)) - (np.tanh(wp / (2 * t)) * i2(w, wp, k, v))
def b(w, k, v, t, b_max=np.inf):
return pynam.util.complex_quad.complex_quad(
lambda wp: b_int(wp, w, k, v, t), 1, b_max
)[0]
def sigma_nam_alk(w, k, v, t):
return -1j * (3 / 4) * (v / w) * (-a(w, k, v, t) + b(w, k, v, t))