pyewjn/pynam/dielectric/sigma_nam.py
2020-07-14 08:22:18 -05:00

65 lines
1.4 KiB
Python

import numpy as np
from numpy.lib.scimath import sqrt as csqrt
import pynam.util
def g(w, wp):
return ((wp * (w + wp)) + 1) / (csqrt(wp ** 2 - 1) * csqrt((w + wp) ** 2 - 1))
def s(k, e, v):
return (e - 1j * v) / k
def f(k, e, v):
sv = s(k, e, v)
logv = np.log(np.real_if_close((sv + 1) / (sv - 1)) + 0j)
return (1 / k) * (2 * sv + ((1 - sv**2) * logv))
def i1(w, wp, k, v):
gv = g(w, wp)
e1 = csqrt((w + wp) ** 2 - 1)
e2 = csqrt(wp ** 2 - 1)
f_upper = f(k, np.real(e1 - e2), np.imag(e1 + e2) + 2 * v) * (gv + 1)
f_lower = f(k, np.real(-e1 - e2), np.imag(e1 + e2) + 2 * v) * (gv - 1)
return f_upper + f_lower
def i2(w, wp, k, v):
gv = g(w, wp)
e1 = csqrt((w + wp) ** 2 - 1)
e2 = csqrt(wp ** 2 - 1)
f_upper = f(k, np.real(e1 - e2), np.imag(e1 + e2) + 2 * v) * (gv + 1)
f_lower = f(k, np.real(e1 + e2), np.imag(e1 + e2) + 2 * v) * (gv - 1)
return f_upper + f_lower
def a(w, k, v, t):
result = pynam.util.complex_quad(
lambda wp: np.tanh((w + wp) / (2 * t)) * (i1(w, wp, k, v)),
1 - w, 1,
epsabs=1e-10
)
return result[0]
def b_int(wp, w, k, v, t):
return (np.tanh((w + wp) / (2 * t)) * i1(w, wp, k, v)) - (np.tanh(wp / (2 * t)) * i2(w, wp, k, v))
def b(w, k, v, t, b_max=np.inf):
return pynam.util.complex_quad(
lambda wp: b_int(wp, w, k, v, t), 1, b_max
)[0]
def sigma_nam(w, k, v, t):
return -1j * (3 / 4) * (v / w) * (-a(w, k, v, t) + b(w, k, v, t))