pyewjn/pynam/dielectric/nam_dielectric_coefficient_approximator.py

120 lines
3.3 KiB
Python

import numpy as np
import pynam.dielectric.sigma_nam
import pynam.dielectric.low_k_nam
from pynam.baskets import CalculationParams, CalculationConstants
from typing import Tuple
FIXED_LARGE_MOMENTUM = 1e8
class DedimensionalisedParameters(object):
def __init__(
self,
omega: float,
sigma_n: float,
tau: float,
v_f: float,
temp: float,
critical_temp: float,
c_light: float):
gap = 0
if temp < critical_temp:
# else, problems will happen
gap = 3.06 * np.sqrt(critical_temp * (critical_temp - temp))
self.xi = omega / gap
self.nu = 1 / (tau * gap)
self.t = temp / gap
self.a = omega * v_f / (c_light * gap)
self.b = sigma_n / omega
class NamDielectricCoefficients(object):
def __init__(self, a: float, b: float, c: float, d: float):
self.a = a
self.b = b
self.c = c
self.d = d
self.u_l = np.real((-self.c + 1j * self.d) / (-self.a + 1j * self.b))
def eps(self, u_c: float):
def piecewise_eps(u: float):
# todo add check for u_c vs u_l
if u < self.u_l:
return -self.a + 1j * self.b
elif self.u_l < u < u_c:
return 1 + (-self.c + 1j * self.d) / u
else:
return 1
return piecewise_eps
def get_dedimensionalised_parameters(
omega: float,
sigma_n: float,
tau: float,
v_f: float,
temp: float,
critical_temp: float,
c_light: float) -> DedimensionalisedParameters:
return DedimensionalisedParameters(omega, sigma_n, tau, v_f, temp, critical_temp, c_light)
def get_small_momentum_coefficients(dedim_params: DedimensionalisedParameters) -> Tuple[float, float]:
prefactor = 4j * np.pi * dedim_params.b
s = pynam.dielectric.low_k_nam.sigma_nam_alk(dedim_params.xi, 0, dedim_params.nu, dedim_params.t)
conductivity = prefactor * s
return -np.real(conductivity), np.imag(conductivity)
def get_big_momentum_coefficients(dedim_params: DedimensionalisedParameters) -> Tuple[float, float]:
prefactor = 4j * np.pi * dedim_params.b * FIXED_LARGE_MOMENTUM / dedim_params.a
s = pynam.dielectric.sigma_nam.sigma_nam(dedim_params.xi,
FIXED_LARGE_MOMENTUM,
dedim_params.nu,
dedim_params.t)
conductivity = prefactor * s
return -np.real(conductivity), np.imag(conductivity)
def get_nam_dielectric_coefficients(
omega: float,
sigma_n: float,
tau: float,
v_f: float,
temp: float,
crit_temp: float,
c_light: float) -> NamDielectricCoefficients:
"""Gets a NamDielectricCoefficients object, using SI unit parameters
:param omega: frequency
:param sigma_n: normal state conductivity
:param tau: tau in Hz
:param v_f: Fermi velocity, in m/s
:param temp: temperature in Hz
:param crit_temp: critical temperature, in Hz
:param c_light: speed of light, meters per second
:return:
"""
dedim = get_dedimensionalised_parameters(omega, sigma_n, tau, v_f, temp, crit_temp, c_light)
a, b = get_small_momentum_coefficients(dedim)
c, d = get_big_momentum_coefficients(dedim)
return NamDielectricCoefficients(a, b, c, d)
def get_nam_dielectric(u_c: float, params: CalculationParams, constants: CalculationConstants = CalculationConstants()):
sigma_n = params.omega_p**2 * params.tau / (4 * np.pi)
coeffs = get_nam_dielectric_coefficients(params.omega,
sigma_n,
params.tau,
params.v_f,
params.t_rel * params.t_c,
params.t_c,
constants.c_light)
return coeffs.eps(u_c)