adds 1.14
This commit is contained in:
parent
3b8d6014a6
commit
001bd74b2a
149
tex/1.14.tex
Normal file
149
tex/1.14.tex
Normal file
@ -0,0 +1,149 @@
|
||||
\documentclass{article}
|
||||
|
||||
% set up telugu
|
||||
\usepackage{fontspec}
|
||||
\newfontfamily\telugufont{Potti Sreeramulu}[Script = Telugu]
|
||||
\usepackage{polyglossia}
|
||||
\setdefaultlanguage{english}
|
||||
\setotherlanguage{telugu}
|
||||
|
||||
%other packages
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{physics}
|
||||
\usepackage{siunitx}
|
||||
\usepackage{todonotes}
|
||||
\usepackage{luacode}
|
||||
\usepackage{titling}
|
||||
\usepackage{enumitem}
|
||||
|
||||
% custom deepak packages
|
||||
\usepackage{luatrivially}
|
||||
\usepackage{subtitling}
|
||||
|
||||
\usepackage{cleveref}
|
||||
|
||||
\begin{luacode*}
|
||||
math.randomseed(31415926)
|
||||
\end{luacode*}
|
||||
|
||||
\newcommand*\mean[1]{\overline{#1}}
|
||||
|
||||
\title{Problem 1.14}
|
||||
\subtitle{Width of the Height Distribution}
|
||||
\author{\begin{telugu}హృదయ్ దీపక్ మల్లుభొట్ల\end{telugu}}
|
||||
% want empty date
|
||||
\predate{}
|
||||
\date{}
|
||||
\postdate{}
|
||||
|
||||
% !TeX spellcheck = en_GB
|
||||
\begin{document}
|
||||
\maketitle
|
||||
Given a Gaussian distribution
|
||||
\begin{equation}
|
||||
\mathcal{N}(x | \mu, \sigma^2) = \frac{1}{\sqrt{2 \pi \sigma^2}} e^{\flatfrac{-\left(x - \mu\right)^2}{\left(2 \sigma^2\right)}}
|
||||
\end{equation}
|
||||
Given a sample of $N$ heights $x_n$, the likelihood that they were drawn from a particular normal distribution with $\mu$ and $\sigma^2$ is
|
||||
\begin{equation}
|
||||
P(\left[x_n \right] | \mu, \sigma^2) = \prod_{n = 1}^N \mathcal{N}(x_n | \mu, \sigma^2).
|
||||
\end{equation}
|
||||
|
||||
This is a nightmare.
|
||||
Can we fix it to be easier to deal with?
|
||||
|
||||
\begin{enumerate}[label=(\alph*)]
|
||||
\item Write $P(\left[x_n \right] | \mu, \sigma^2)$ as a formula depending only on $N$, the sample mean $\mean{x}$ and $S = \sum_n \left(x_n - \mean{x} \right)^2$.
|
||||
\item Show that $P$ takes its maximum at $\mu_{ML} = \mean{x}$ and $\sigma_{ML} = \sqrt{\flatfrac{S}{N}}$.
|
||||
\item Assume entire population is drawn from (not necessarily Gaussian) distribution with variance $\left<x^2\right>_{samp} = \sigma_0^2$.
|
||||
Let $\mu = 0$ for the population.
|
||||
Show that $\left< \sigma_{ML}^2 \right>_{samp} = \frac{N - 1}{N} \sigma_0^2$
|
||||
\end{enumerate}
|
||||
Through this problem, $\mean{x}$ is a mean over a single sample, and $\left<x \right>$ is average over many samples.
|
||||
\section{Solution} \label{sec:solution}
|
||||
\subsection{(a) Simplify $P$} \label{subsec:sola}
|
||||
|
||||
\begin{align}
|
||||
P(\left[x_n \right] | \mu, \sigma^2) &= \prod_{n = 1}^N \mathcal{N}(x_n | \mu, \sigma^2) \\
|
||||
P(\left[x_n \right] | \mu, \sigma^2) &= \prod_{n = 1}^N \frac{1}{\sqrt{2 \pi \sigma^2}} e^{\flatfrac{-\left(x_n - \mu\right)^2}{\left(2 \sigma^2\right)}} \\
|
||||
P(\left[x_n \right] | \mu, \sigma^2) &= \left( \frac{1}{\sqrt{2 \pi \sigma^2}}\right)^N \prod_{n = 1}^N e^{\flatfrac{-\left(x_n - \mu\right)^2}{\left(2 \sigma^2\right)}} \\
|
||||
P(\left[x_n \right] | \mu, \sigma^2) &= \left( \frac{1}{\sqrt{2 \pi \sigma^2}}\right)^N e^{\flatfrac{1}{\left(2 \sigma^2\right)}} \prod_{n = 1}^N e^{-\left(x_n - \mu\right)^2} \\
|
||||
P(\left[x_n \right] | \mu, \sigma^2) &= \left( \frac{1}{\sqrt{2 \pi \sigma^2}}\right)^N e^{\flatfrac{1}{\left(2 \sigma^2\right)}} e^{-\sum_n^N \left(x_n - \mu\right)^2} \\
|
||||
P(\left[x_n \right] | \mu, \sigma^2) &= \left( \frac{1}{\sqrt{2 \pi \sigma^2}}\right)^N e^{\flatfrac{1}{\left(2 \sigma^2\right)}} \exp(-\sum_n^N \left(x_n - \mu\right)^2) \label{eq:backup}
|
||||
\end{align}
|
||||
|
||||
So we can isolate the grossness to the sum in the numerator.
|
||||
|
||||
\begin{align}
|
||||
\sum_n^N \left(x_n - \mu\right)^2 &= \sum_n^N \left( x_n^2 - 2 \mu x_n + \mu^2 \right) \\
|
||||
&= \sum_n^N x_n^2 - 2 \sum_n^N \mu x_n + \sum_n^N \mu^2 \\
|
||||
&= \sum_n^N x_n^2 - 2 \mu \sum_n^N x_n + \mu^2 \sum_n^N 1 \\
|
||||
&= \sum_n^N x_n^2 - 2 \mu N \mean{x} + N \mu^2
|
||||
\end{align}
|
||||
|
||||
The pesky $x_n^2$ reminds us of $S$, so we expand it:
|
||||
\begin{align}
|
||||
S = \sum_n^N \left(x_n - \mean{x} \right)^2 \\
|
||||
= \sum_n^N \left(x_n^2 - 2 x_n \mean{x} + \mean{x}^2 \right) \\
|
||||
= \sum_n^N x_n^2 - 2 \sum_n^N x_n \mean{x} + \sum_n^N \mean{x}^2 \\
|
||||
= \sum_n^N x_n^2 - 2 \mean{x} \sum_n^N x_n + N \mean{x}^2 \\
|
||||
= \sum_n^N x_n^2 - 2 N \mean{x}^2 + N \mean{x}^2 \\
|
||||
S = \sum_n^N x_n^2 - N \mean{x}^2,
|
||||
\end{align}
|
||||
so then
|
||||
\begin{align}
|
||||
\sum_n^N \left(x_n - \mu\right)^2 &= \sum_n^N x_n^2 - 2 \mu N \mean{x} + N \mu^2 \\
|
||||
\sum_n^N \left(x_n - \mu\right)^2 &= S + N \mean{x}^2 - 2 \mu N \mean{x} + N \mu^2 \\
|
||||
\sum_n^N \left(x_n - \mu\right)^2 &= S + N \left(\mean{x} - \mu \right)^2
|
||||
\end{align}
|
||||
Inserting this into \cref{eq:backup}, we get
|
||||
\begin{align}
|
||||
P(\left[x_n \right] | \mu, \sigma^2) &= \left( \frac{1}{\sqrt{2 \pi \sigma^2}}\right)^N e^{\flatfrac{1}{\left(2 \sigma^2\right)}} \exp(-\sum_n^N \left(x_n - \mu\right)^2) \\
|
||||
P(\left[x_n \right] | \mu, \sigma^2) &= \left( \frac{1}{\sqrt{2 \pi \sigma^2}}\right)^N e^{\flatfrac{1}{\left(2 \sigma^2\right)}} \exp(- S - N \left(\mean{x} - \mu \right)^2) \\
|
||||
P(\left[x_n \right] | \mu, \sigma^2) &= \left( \frac{1}{\sqrt{2 \pi \sigma^2}}\right)^N \exp(\frac{- S - N \left(\mean{x} - \mu \right)^2}{2 \sigma^2}) \\
|
||||
\end{align}
|
||||
|
||||
\subsection{(b) max likelihood}
|
||||
This section is basically just a lot of gross derivatives.
|
||||
We want to maximise
|
||||
\begin{equation}
|
||||
P(\left[x_n \right] | \mu, \sigma^2) = \left( \frac{1}{\sqrt{2 \pi \sigma^2}}\right)^N \exp(\frac{- S - N \left(\mean{x} - \mu \right)^2}{2 \sigma^2})
|
||||
\end{equation}
|
||||
|
||||
Because $\log$ is monotonic, we can maximise $\log P$:
|
||||
\begin{align}
|
||||
\log P(\left[x_n \right] | \mu, \sigma^2) &= \log \left( \frac{1}{\sqrt{2 \pi \sigma^2}}\right)^N \exp(\frac{- S - N \left(\mean{x} - \mu \right)^2}{2 \sigma^2}) \\
|
||||
\log P(\left[x_n \right] | \mu, \sigma^2) &= \log \left( \frac{1}{\sqrt{2 \pi \sigma^2}}\right)^N + \log \exp(\frac{- S - N \left(\mean{x} - \mu \right)^2}{2 \sigma^2}) \\
|
||||
\log P(\left[x_n \right] | \mu, \sigma^2) &= N \log \frac{1}{\sqrt{2 \pi \sigma^2}} + \frac{- S - N \left(\mean{x} - \mu \right)^2}{2 \sigma^2} \\
|
||||
\log P(\left[x_n \right] | \mu, \sigma^2) &= - \frac{N}{2} \log \sigma^2 + C - \frac{S + N \left(\mean{x} - \mu \right)^2}{2 \sigma^2} \\
|
||||
\log P(\left[x_n \right] | \mu, \sigma^2) &= - N \log \sigma + C - \frac{S + N \left(\mean{x} - \mu \right)^2}{2 \sigma^2}
|
||||
\end{align}
|
||||
First minimise with respect to $\mu$:
|
||||
\begin{align}
|
||||
\pdv{\log P}{\mu} &= - \pdv{}{\mu} \frac{S + N \left(\mean{x} - \mu \right)^2}{2 \sigma^2},
|
||||
\end{align}
|
||||
which clearly reaches zero when $\mu = \mean{x}$.
|
||||
|
||||
Next, we look at minimising with respect to $\sigma$:
|
||||
\begin{align}
|
||||
\pdv{\log P}{\sigma} &= \pdv{}{\sigma }- N \log \sigma + C - \frac{S + N \left(\mean{x} - \mu \right)^2}{2 \sigma^2} \\
|
||||
\pdv{\log P}{\sigma} &= - \frac{N}{\sigma} - \pdv{}{\sigma} \frac{S + N \left(\mean{x} - \mu \right)^2}{2 \sigma^2} \\
|
||||
\pdv{\log P}{\sigma} &= - \frac{N}{\sigma} - \frac{S + N \left(\mean{x} - \mu \right)^2}{2} \pdv{}{\sigma} \frac{1}{\sigma^2} \\
|
||||
\pdv{\log P}{\sigma} &= - \frac{N}{\sigma} - \frac{S + N \left(\mean{x} - \mu \right)^2}{2} \frac{-2}{\sigma^3} \\
|
||||
\pdv{\log P}{\sigma} &= - \frac{N}{\sigma} + \frac{S + N \left(\mean{x} - \mu \right)^2}{\sigma^3}
|
||||
\end{align}
|
||||
\triv we can now sub $\mu = \mean{x}$, giving us
|
||||
\begin{align}
|
||||
\pdv{\log P}{\sigma} &= - \frac{N}{\sigma} + \frac{S}{\sigma^3}.
|
||||
\end{align}
|
||||
Minimising,
|
||||
\begin{align}
|
||||
0 &= - \frac{N}{\sigma_{ML}} + \frac{S}{\sigma_{ML}^3} \\
|
||||
\frac{N}{\sigma_{ML}} &= \frac{S}{\sigma_{ML}^3} \\
|
||||
\sigma_{ML} &= \sqrt{\frac{S}{N}}
|
||||
\end{align}
|
||||
|
||||
\newpage
|
||||
\listoftodos
|
||||
|
||||
\end{document}
|
Loading…
x
Reference in New Issue
Block a user