diff --git a/tex/3.8.tex b/tex/3.8.tex index 1f6e82a..ca687ce 100644 --- a/tex/3.8.tex +++ b/tex/3.8.tex @@ -13,7 +13,6 @@ \usepackage{physics} \usepackage{siunitx} \usepackage{todonotes} -\usepackage[plain]{fancyref} \usepackage{luacode} \usepackage{titling} \usepackage{enumerate} @@ -22,6 +21,8 @@ \usepackage{luatrivially} \usepackage{subtitling} +\usepackage{cleveref} + \begin{luacode*} math.randomseed(31415926) \end{luacode*} @@ -43,19 +44,26 @@ This problem talks about about weakly coupling subsystems and looking at fluctuations. An earlier result is that \begin{equation} - \sigma_{E_1}^2 = - \flatfrac{\kb}{\left(\pdv[2]{S_1}{E_1} + \pdv[2]{S_2}{E_2}\right)} + \sigma_{E_1}^2 = - \flatfrac{\kb}{\left(\pdv[2]{S_1}{E_1} + \pdv[2]{S_2}{E_2}\right)} \label{eq:1} \end{equation} \begin{enumerate}[(a)] \item Show that \begin{equation} - \frac{1}{\kb} \pdv[2]{S}{E} = - \frac{1}{\kb T} \frac{1}{N c_v T}, + \frac{1}{\kb} \pdv[2]{S}{E} = - \frac{1}{\kb T} \frac{1}{N c_v T}, \label{eq:2} \end{equation} where $c_v$ is the inverse of the total specific heat at constant volume. The specific heat $c_v$ is the energy needed per particle to change the temperature by one unit: \begin{equation} N c_v = \left.\left(\pdv{E}{T}\right)\right|_{V, N} \end{equation} + \item If $c_v^{(1)}$ and $c_v^{(2)}$ are the specific heats per particle for two subsystems of $N$ particles each, show using \cref{eq:1,eq:2} that + \begin{equation} + \frac{1}{c_v^{(1)}} + \frac{1}{c_v^{(2)}} = \frac{N \kb T^2}{\sigma_{E_1}^2} \label{eq:3} + \end{equation} + \item Using the equipartition theorem, write the temperature in terms of the mean kinetic energy $K = \left$ (with standard deviation $\sigma_K$). + Show that $c_v^{(1)} = \flatfrac{3\kb}{2}$ for the momentum degrees of freedom. + In terms of $K$ and $\sigma_K$, solve for the total specific heat of the molecular dynamics simulation (configurational plus kinetic). \end{enumerate} \section{Solution} \label{sec:solution} @@ -73,6 +81,67 @@ \frac{1}{\kb} \left.\pdv[2]{S}{E} \right|_{V, N} &= - \frac{1}{\kb T} \frac{1}{N c_v T}, \end{align} as desired. + \subsection*{(b)} + We want to show + \begin{equation} + \frac{1}{c_v^{(1)}} + \frac{1}{c_v^{(2)}} = \frac{N \kb T^2}{\sigma_{E_1}^2} + \end{equation} + Start with the $\sigma_{E_1}^2$ term from \cref{eq:1}, and use our result from the first part \cref{eq:2}: + \begin{align} + \sigma_{E_1}^2 &= - \flatfrac{\kb}{\left(\pdv[2]{S_1}{E_1} + \pdv[2]{S_2}{E_2}\right)} \\ + \sigma_{E_1}^2 &= - \flatfrac{1}{\left(\frac{1}{\kb} \pdv[2]{S_1}{E_1} + \frac{1}{\kb}\pdv[2]{S_2}{E_2}\right)} \\ + - \frac{1}{\sigma_{E_1}^2} &= \frac{1}{\kb} \pdv[2]{S_1}{E_1} + \frac{1}{\kb}\pdv[2]{S_2}{E_2} \\ + - \frac{1}{\sigma_{E_1}^2} &= \left(- \frac{1}{\kb T} \frac{1}{N c_v^{(1)} T}\right) + \left(- \frac{1}{\kb T} \frac{1}{N c_v^{(2)} T} \right)\\ + \frac{1}{\sigma_{E_1}^2} &= \frac{1}{\kb T} \frac{1}{N c_v^{(1)} T} + \frac{1}{\kb T} \frac{1}{N c_v^{(2)} T} \\ + \frac{N \kb T^2}{\sigma_{E_1}^2} &= \frac{1}{c_v^{(1)}} + \frac{1}{c_v^{(2)}}, + \end{align} + giving us our desired result. + \subsection*{(c)} + Sethna keeps these assumptions implicit, but this problem is for a monatomic ideal gas in a 3D space. + I think that assuming 3D space is something you should explicitly state, but that probably says more about me than Sethna. + In that case, there are three degrees of freedom for the kinetic energy. + The problem implicitly sets up a division of the degrees of freedom in the problem as the kinetic and configurational, where configuration refers to functions of position (including the background potential and the interactions). + If there are rotational degrees of freedom, you could group the rotational kinetic energy in with the ``configurational'' ones and recover these results anyway, but then it's not quite configurational so the terminology doesn't make a ton of sense. + So our system $1$ will include the three linear momenta, and system $2$ includes everything else. + What Sethna calls $K$ is then the kinetic energy from those three linear momenta, ignoring any rotational kinetic energy etc. + + The equipartition theorem tells us that each degree of freedom in the kinetic energy should satisfy $\frac12 N \kb T$. + So, using the three degrees of freedom as described above, we can just write that $K = \left< E_1 \right> = \frac32 N \kb T$. + Our specific heat per particle satisfies $\N c_v^{(1)}) \left.\left( \pdv{E_1}{T} \right)\right|_{V, N}$, which is clearly $c_v^{(1)} = \frac32 \kb$, as Sethna wants us to find. + + Now lets use \cref{eq:3} and solve for $c_v^{(2)}$. + \begin{align} + \frac{1}{c_v^{(1)}} + \frac{1}{c_v^{(2)}} &= \frac{N \kb T^2}{\sigma_{E_1}^2} \\ + \frac{1}{\frac32 \kb} + \frac{1}{c_v^{(2)}} &= \frac{N \kb T^2}{\sigma_K^2} \\ + \frac{1}{c_v^{(2)}} &= \frac{N \kb T^2}{\sigma_K^2} - \frac{1}{\frac32 \kb} \\ + \frac{1}{c_v^{(2)}} &= \frac{\frac32 N \kb^2 T^2}{\frac32 \kb \sigma_K^2} - \frac{\sigma_K^2}{\frac32 \kb \sigma_K^2} \\ + \frac{1}{c_v^{(2)}} &= \frac{\frac32 N \kb^2 T^2 - \sigma_K^2}{\frac32 \kb \sigma_K^2}. + \end{align} + Solve for $K$ rather than $T$: + \begin{align} + K &= \frac32 N \kb T \\ + T &= \frac23 \frac{1}{N \kb} K. + \end{align} + Plug this back in: + \begin{align} + \frac{1}{c_v^{(2)}} &= \frac{\frac32 N \kb^2 \left(\frac23 \frac{1}{N \kb} K \right)^2 - \sigma_K^2}{\frac32 \kb \sigma_K^2} \\ + \frac{\frac32 \kb \sigma_K^2}{c_v^{(2)}} &= \frac32 N \kb^2 \left(\frac23 \frac{1}{N \kb} K \right)^2 - \sigma_K^2 \\ + \frac{\frac32 \kb \sigma_K^2}{c_v^{(2)}} &= \frac23 N \kb^2 \frac{1}{N^2 \kb^2} K^2 - \sigma_K^2 \\ + \frac{\frac32 \kb \sigma_K^2}{c_v^{(2)}} &= \frac23 \frac{1}{N} K^2 - \sigma_K^2 \\ + \frac{c_v^{(2)}}{\frac32 \kb \sigma_K^2} &= \flatfrac{1}{\left(\frac23 \frac{1}{N} K^2 - \sigma_K^2\right)} \\ + c_v^{(2)} &= \flatfrac{\frac32 \kb \sigma_K^2}{\left(\frac23 \frac{1}{N} K^2 - \sigma_K^2\right)} \\ + c_v^{(2)} &= \frac{9 N \kb \sigma_K^2}{4 K^2 - 6 N \sigma_K^2} + \end{align} + That's not a pretty equation. + Our total specific heat is $c_v^{(1)} + c_v^{(2)}$. + \begin{align} + c_v^{(1)} + c_v^{(2)} &= \frac32 \kb + \frac{9 N \kb \sigma_K^2}{4 K^2 - 6 N \sigma_K^2} \\ + c_v^{(1)} + c_v^{(2)} &= \frac{3 \kb}{2}\frac{2 K^2 - 3 N \sigma_K^2}{2 K^2 - 3 N \sigma_K^2} + \frac{9 N \kb \sigma_K^2}{4 K^2 - 6 N \sigma_K^2} \\ + c_v^{(1)} + c_v^{(2)} &= \frac{6 \kb K^2 - 9 \kb N \sigma_K^2}{4 K^2 - 6 N \sigma_K^2} + \frac{9 N \kb \sigma_K^2}{4 K^2 - 6 N \sigma_K^2} \\ + c_v^{(1)} + c_v^{(2)} &= \frac{6 \kb K^2 - 9 \kb N \sigma_K^2 + 9 N \kb \sigma_K^2}{4 K^2 - 6 N \sigma_K^2} \\ + c_v^{(1)} + c_v^{(2)} &= \frac{6 \kb K^2}{4 K^2 - 6 N \sigma_K^2} \\ + c_v^{(1)} + c_v^{(2)} &= \frac{3 \kb K^2}{2 K^2 - 3 N \sigma_K^2} + \end{align} \newpage \listoftodos