Adds solution to b
This commit is contained in:
parent
66864f6b41
commit
4d8a9f9173
33
tex/1.6.tex
33
tex/1.6.tex
@ -16,7 +16,7 @@
|
||||
\usepackage[plain]{fancyref}
|
||||
\usepackage{luacode}
|
||||
\usepackage{titling}
|
||||
\usepackage{enumerate}
|
||||
\usepackage{enumitem}
|
||||
|
||||
% custom deepak packages
|
||||
\usepackage{luatrivially}
|
||||
@ -43,8 +43,37 @@
|
||||
\rho(x) = \frac{1}{\sqrt{2 \pi}} e^{-\flatfrac{x^2}{2}}
|
||||
\end{equation}
|
||||
Then add with its transpose to make symmetric.
|
||||
Let's look at $N = 2$, so $M = \begin{pmatrix}
|
||||
a & b \\
|
||||
b & c
|
||||
\end{pmatrix}$
|
||||
\begin{enumerate}[label=(\alph*), start=2]
|
||||
\item Show that the eigenvalue difference for $M$ is $\lambda = \sqrt{\left(c - a\right)^2 + 4 b^2} = 2 \sqrt{d^2 + b^2}$, where $d = \flatfrac{\left(c-a\right)}{2}$
|
||||
\end{enumerate}
|
||||
\section{Solution} \label{sec:solution}
|
||||
\subsection{Likelihoods} \label{subsec:sola}
|
||||
\subsection{(b) Eigenvalue differences} \label{subsec:solb}
|
||||
\triv the eigenvalues $\nu_{\pm}$ are easy to find.
|
||||
Set up the characteristic equation.
|
||||
\begin{align}
|
||||
0 &= \left(a - \nu\right)\left(c - \nu\right) - b^2 \\
|
||||
&= (ac - b^2) - \left(a + c\right) \nu + \nu^2.
|
||||
\end{align}
|
||||
\thrf
|
||||
\begin{align}
|
||||
\nu_\pm &= \frac{\left(a + c \right) \pm \sqrt{\left(a + c\right)^2 - 4 \left(ac -b^2\right)}}{2} \\
|
||||
\nu_\pm &= \frac{\left(a + c \right) \pm \sqrt{\left(c - a\right)^2 + 4 b^2}}{2}
|
||||
\end{align}
|
||||
So the difference is $\sqrt{\left(c - a\right)^2 + 4 b^2}$.
|
||||
|
||||
We have thus $\flatfrac{\lambda^2}{4} = d^2 + b^2$, so the region of between fixed $\lambda$ and $\lambda + \Delta$ is an annulus, around the circle with radius $\flatfrac{\lambda}{2}$.
|
||||
|
||||
\triv \begin{align}
|
||||
\rho(\lambda) &= \int_{(d, b)} \rho(d, b) \dd{d} \dd{b} \\
|
||||
&\propto \int_{(d, b)} \rho(d, b) \lambda \dd{\lambda} \dd{\phi} \\
|
||||
&\propto 2 \pi \int_{(d, b)} \rho(d, b) \lambda \dd{\lambda}
|
||||
\end{align}
|
||||
The $\propto$ is because some factors of $2$.
|
||||
Important point is that as long as the probability $\rho_M$ is well-enough behaved, then as $\lambda \rightarrow 0$, $\rho(\lambda) \rightarrow 0$.
|
||||
\newpage
|
||||
\listoftodos
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user