feat: adds 3.19

This commit is contained in:
Deepak Mallubhotla 2022-03-21 21:21:46 -05:00
parent dad09d7702
commit 6db851f273
Signed by: deepak
GPG Key ID: BEBAEBF28083E022

71
tex/3.19.tex Normal file
View File

@ -0,0 +1,71 @@
\documentclass{article}
% set up telugu
\usepackage{fontspec}
\newfontfamily\telugufont{Potti Sreeramulu}[Script = Telugu]
\usepackage{polyglossia}
\setdefaultlanguage{english}
\setotherlanguage{telugu}
%other packages
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{physics}
\usepackage{siunitx}
\usepackage{todonotes}
\usepackage{luacode}
\usepackage{titling}
\usepackage{enumerate}
% custom deepak packages
\usepackage{luatrivially}
\usepackage{subtitling}
\usepackage{cleveref}
\begin{luacode*}
math.randomseed(31415926)
\end{luacode*}
\newcommand{\kb}{k_{\mathrm{B}}}
\title{Problem 3.19}
\subtitle{Random energy model}
\author{\begin{telugu}హృదయ్ దీపక్ మల్లుభొట్ల\end{telugu}}
% want empty date
\predate{}
\date{}
\postdate{}
% !TeX spellcheck = en_GB
\begin{document}
\maketitle
Given $N$ spins (so $M = 2^N$ possible states), assign a random energy to each.
Given $j \in \left{1, 2, \ldots, 2^N \right}$, assume each energy $E_j$ is selected with probability $P(E) = \frac{1}{\sqrt{\pi N}} e^{\flatfrac{-E^2}{N}}$.
Gaussian with mean $0$ and standard deviation $\sqrt{\flatfrac{N}{2}}$
\subsubsection*{(a) Microcanonical ensemble}
Consider the states in a small range $E < E_j < E+\deltaE$.
Let the number of such states in this range be $\Omega(E) \delta E$.
Calculate the average
\begin{equation}
\left< \Omega(N\epsilon) \right>_{REM}
\end{equation}
over the ensemble of REM systems, in terms of energy per particle $\epsilon$.
For energies per particle near zero, show that this average density of states grows exponentially as the system size $N$ grows.
In contrast, show that $\left< \Omega(N\epsilon) \right>_{REM}$ decreases exponentially for $\epsilon = \flatfrac{E}{N} < -\epsilon_\ast$ and for $\epsilon > \epsilon_\ast$, where the limiting energy per particle
\begin{equation}
\epsilon_\ast = \sqrt{\log 2}.
\end{equation}
(Hint: as $N$ grows, the probability density $P(N \epsilon)$ decreases exponentially, which the total number of states $2^N$ grows exponentially.
Which one wins?)
\section{Solution} \label{sec:solution}
\newpage
\listoftodos
\end{document}