feat: adds 7.12
This commit is contained in:
parent
2cf4c694d1
commit
e6304c360c
78
tex/7.12.tex
Normal file
78
tex/7.12.tex
Normal file
@ -0,0 +1,78 @@
|
||||
\documentclass{article}
|
||||
|
||||
% set up telugu
|
||||
\usepackage{fontspec}
|
||||
\newfontfamily\telugufont{Potti Sreeramulu}[Script = Telugu]
|
||||
\usepackage{polyglossia}
|
||||
\setdefaultlanguage{english}
|
||||
\setotherlanguage{telugu}
|
||||
|
||||
%other packages
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{physics}
|
||||
\usepackage[binary-units=true]{siunitx}
|
||||
\usepackage{todonotes}
|
||||
\usepackage{luacode}
|
||||
\usepackage{titling}
|
||||
\usepackage{enumerate}
|
||||
|
||||
% custom deepak packages
|
||||
\usepackage{luatrivially}
|
||||
\usepackage{subtitling}
|
||||
|
||||
\usepackage{cleveref}
|
||||
|
||||
\begin{luacode*}
|
||||
math.randomseed(31415926)
|
||||
\end{luacode*}
|
||||
|
||||
\newcommand{\kb}{k_{\mathrm{B}}}
|
||||
|
||||
\title{Problem 7.12}
|
||||
\subtitle{Semiconductors}
|
||||
\author{\begin{telugu}హృదయ్ దీపక్ మల్లుభొట్ల\end{telugu}}
|
||||
% want empty date
|
||||
\predate{}
|
||||
\date{}
|
||||
\postdate{}
|
||||
|
||||
% !TeX spellcheck = en_GB
|
||||
\begin{document}
|
||||
\maketitle
|
||||
|
||||
We're looking at an example of a doped superconductor.
|
||||
We have $N - M$ atoms of silicon, and $M$ atoms of phosphorus.
|
||||
Each Si atom contributes one electron, and two states (at $\pm \flatfrac{\Delta}{2}$).
|
||||
We'll take the energy gap $\Delta = \SI{1.16}{\eV}$ for example.
|
||||
|
||||
The phosphorous atoms contribute \emph{two} electrons and two states, at $-\flatfrac{\Delta}{2}$ and $\flatfrac{\Delta}{2} - \epsilon$.
|
||||
The impurity energy guy $\epsilon = \SI{0.044}{\eV}$, and is much smaller than the energy gap.
|
||||
|
||||
So the ground state here has $N + M$ electrons, so the $N$ valence bands at $-\flatfrac{\Delta}{2}$ and $M$ impurity band states at $-\flatfrac{\Delta}{2} - \epsilon$ are filled, and the $N - M$ conduction band states at $\flatfrac{\Delta}{2}$ are empty.
|
||||
|
||||
\subsection*{(a)}
|
||||
Derive a formula for the number of electrons as a function of temperature $T$ and chemical potential $\mu$ for the energy levels of our system.
|
||||
|
||||
\section{Solution} \label{sec:solution}
|
||||
|
||||
\subsection*{(a)}
|
||||
So we have $N + M$ electrons.
|
||||
Easy.
|
||||
|
||||
Sethna probably wants us to write the right hand side of this too.
|
||||
|
||||
For each energy $E$, the single electron occupation is our Fermi distribution:
|
||||
\begin{equation}
|
||||
f(T) = \frac{1}{e^{\beta \left(E - \mu \right)} + 1}
|
||||
\end{equation}
|
||||
So if we add this up by the number of electrons and number of available states, we get
|
||||
\begin{equation}
|
||||
N + M = \frac{N}{e^{\beta \left(-\flatfrac{\Delta}{2} - \mu \right)} + 1} + \frac{M}{e^{\beta \left(\flatfrac{\Delta}{2} - \epsilon - \mu \right)} + 1} + \frac{N - M}{e^{\beta \left(\flatfrac{\Delta}{2} - \mu \right)} + 1}.
|
||||
\end{equation}
|
||||
What this really gives us is an implicit relationship for $\mu(T)$, because those are the two undetermined quantities.
|
||||
|
||||
\newpage
|
||||
\listoftodos
|
||||
|
||||
\end{document}
|
Loading…
x
Reference in New Issue
Block a user