feat: adds 7.12

This commit is contained in:
Deepak Mallubhotla 2022-04-14 20:03:08 -05:00
parent 2cf4c694d1
commit e6304c360c
Signed by: deepak
GPG Key ID: BEBAEBF28083E022

78
tex/7.12.tex Normal file
View File

@ -0,0 +1,78 @@
\documentclass{article}
% set up telugu
\usepackage{fontspec}
\newfontfamily\telugufont{Potti Sreeramulu}[Script = Telugu]
\usepackage{polyglossia}
\setdefaultlanguage{english}
\setotherlanguage{telugu}
%other packages
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{physics}
\usepackage[binary-units=true]{siunitx}
\usepackage{todonotes}
\usepackage{luacode}
\usepackage{titling}
\usepackage{enumerate}
% custom deepak packages
\usepackage{luatrivially}
\usepackage{subtitling}
\usepackage{cleveref}
\begin{luacode*}
math.randomseed(31415926)
\end{luacode*}
\newcommand{\kb}{k_{\mathrm{B}}}
\title{Problem 7.12}
\subtitle{Semiconductors}
\author{\begin{telugu}హృదయ్ దీపక్ మల్లుభొట్ల\end{telugu}}
% want empty date
\predate{}
\date{}
\postdate{}
% !TeX spellcheck = en_GB
\begin{document}
\maketitle
We're looking at an example of a doped superconductor.
We have $N - M$ atoms of silicon, and $M$ atoms of phosphorus.
Each Si atom contributes one electron, and two states (at $\pm \flatfrac{\Delta}{2}$).
We'll take the energy gap $\Delta = \SI{1.16}{\eV}$ for example.
The phosphorous atoms contribute \emph{two} electrons and two states, at $-\flatfrac{\Delta}{2}$ and $\flatfrac{\Delta}{2} - \epsilon$.
The impurity energy guy $\epsilon = \SI{0.044}{\eV}$, and is much smaller than the energy gap.
So the ground state here has $N + M$ electrons, so the $N$ valence bands at $-\flatfrac{\Delta}{2}$ and $M$ impurity band states at $-\flatfrac{\Delta}{2} - \epsilon$ are filled, and the $N - M$ conduction band states at $\flatfrac{\Delta}{2}$ are empty.
\subsection*{(a)}
Derive a formula for the number of electrons as a function of temperature $T$ and chemical potential $\mu$ for the energy levels of our system.
\section{Solution} \label{sec:solution}
\subsection*{(a)}
So we have $N + M$ electrons.
Easy.
Sethna probably wants us to write the right hand side of this too.
For each energy $E$, the single electron occupation is our Fermi distribution:
\begin{equation}
f(T) = \frac{1}{e^{\beta \left(E - \mu \right)} + 1}
\end{equation}
So if we add this up by the number of electrons and number of available states, we get
\begin{equation}
N + M = \frac{N}{e^{\beta \left(-\flatfrac{\Delta}{2} - \mu \right)} + 1} + \frac{M}{e^{\beta \left(\flatfrac{\Delta}{2} - \epsilon - \mu \right)} + 1} + \frac{N - M}{e^{\beta \left(\flatfrac{\Delta}{2} - \mu \right)} + 1}.
\end{equation}
What this really gives us is an implicit relationship for $\mu(T)$, because those are the two undetermined quantities.
\newpage
\listoftodos
\end{document}